(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(0) → cons(0)
f(s(0)) → f(p(s(0)))
p(s(X)) → X

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(0) → cons(0)
f(s(0)) → f(p(s(0)))
p(s(z0)) → z0
Tuples:

F(s(0)) → c1(F(p(s(0))), P(s(0)))
S tuples:

F(s(0)) → c1(F(p(s(0))), P(s(0)))
K tuples:none
Defined Rule Symbols:

f, p

Defined Pair Symbols:

F

Compound Symbols:

c1

(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace F(s(0)) → c1(F(p(s(0))), P(s(0))) by

F(s(0)) → c1(F(0), P(s(0)))
F(s(0)) → c1

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(0) → cons(0)
f(s(0)) → f(p(s(0)))
p(s(z0)) → z0
Tuples:

F(s(0)) → c1(F(0), P(s(0)))
F(s(0)) → c1
S tuples:

F(s(0)) → c1(F(0), P(s(0)))
F(s(0)) → c1
K tuples:none
Defined Rule Symbols:

f, p

Defined Pair Symbols:

F

Compound Symbols:

c1, c1

(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing nodes:

F(s(0)) → c1
F(s(0)) → c1(F(0), P(s(0)))

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(0) → cons(0)
f(s(0)) → f(p(s(0)))
p(s(z0)) → z0
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

f, p

Defined Pair Symbols:none

Compound Symbols:none

(7) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(8) BOUNDS(O(1), O(1))