We consider the following Problem: Strict Trs: { f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , p(s(X)) -> X , f(X) -> n__f(X) , s(X) -> n__s(X) , 0() -> n__0() , activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: Arguments of following rules are not normal-forms: { f(0()) -> cons(0(), n__f(n__s(n__0()))) , f(s(0())) -> f(p(s(0()))) , p(s(X)) -> X} All above mentioned rules can be savely removed. We consider the following Problem: Strict Trs: { f(X) -> n__f(X) , s(X) -> n__s(X) , 0() -> n__0() , activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {0() -> n__0()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1}, Uargs(cons) = {}, Uargs(n__f) = {}, Uargs(n__s) = {}, Uargs(s) = {1}, Uargs(p) = {}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [1 0] x1 + [0] [0 0] [1] 0() = [2] [0] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [1 0] [0 0] [0] n__f(x1) = [1 0] x1 + [0] [0 0] [0] n__s(x1) = [1 0] x1 + [0] [0 0] [0] n__0() = [0] [0] s(x1) = [1 0] x1 + [0] [0 0] [1] p(x1) = [0 0] x1 + [0] [0 0] [0] activate(x1) = [1 0] x1 + [1] [1 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { f(X) -> n__f(X) , s(X) -> n__s(X) , activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__0()) -> 0() , activate(X) -> X} Weak Trs: {0() -> n__0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(n__0()) -> 0()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1}, Uargs(cons) = {}, Uargs(n__f) = {}, Uargs(n__s) = {}, Uargs(s) = {1}, Uargs(p) = {}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [1 0] x1 + [0] [0 0] [1] 0() = [0] [0] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [1 0] [0 0] [0] n__f(x1) = [1 0] x1 + [0] [0 0] [0] n__s(x1) = [1 0] x1 + [0] [0 0] [0] n__0() = [0] [0] s(x1) = [1 0] x1 + [0] [0 0] [1] p(x1) = [0 0] x1 + [0] [0 0] [0] activate(x1) = [1 0] x1 + [1] [1 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { f(X) -> n__f(X) , s(X) -> n__s(X) , activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(X) -> X} Weak Trs: { activate(n__0()) -> 0() , 0() -> n__0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {s(X) -> n__s(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1}, Uargs(cons) = {}, Uargs(n__f) = {}, Uargs(n__s) = {}, Uargs(s) = {1}, Uargs(p) = {}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [1 0] x1 + [0] [0 0] [1] 0() = [0] [0] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [1 0] [0 0] [0] n__f(x1) = [1 0] x1 + [0] [0 0] [0] n__s(x1) = [1 0] x1 + [0] [0 0] [0] n__0() = [0] [0] s(x1) = [1 0] x1 + [2] [0 0] [1] p(x1) = [0 0] x1 + [0] [0 0] [0] activate(x1) = [1 0] x1 + [1] [1 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { f(X) -> n__f(X) , activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(X) -> X} Weak Trs: { s(X) -> n__s(X) , activate(n__0()) -> 0() , 0() -> n__0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {f(X) -> n__f(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1}, Uargs(cons) = {}, Uargs(n__f) = {}, Uargs(n__s) = {}, Uargs(s) = {1}, Uargs(p) = {}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [1 0] x1 + [2] [0 0] [0] 0() = [0] [0] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [1 0] [0 0] [0] n__f(x1) = [1 0] x1 + [0] [0 0] [0] n__s(x1) = [1 0] x1 + [0] [0 0] [0] n__0() = [0] [0] s(x1) = [1 0] x1 + [0] [0 0] [1] p(x1) = [0 0] x1 + [0] [0 0] [0] activate(x1) = [1 0] x1 + [1] [1 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(X) -> X} Weak Trs: { f(X) -> n__f(X) , s(X) -> n__s(X) , activate(n__0()) -> 0() , 0() -> n__0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(X) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1}, Uargs(cons) = {}, Uargs(n__f) = {}, Uargs(n__s) = {}, Uargs(s) = {1}, Uargs(p) = {}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [1 0] x1 + [0] [0 1] [1] 0() = [0] [0] cons(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 1] [0] n__f(x1) = [1 0] x1 + [0] [0 1] [0] n__s(x1) = [1 0] x1 + [0] [0 0] [0] n__0() = [0] [0] s(x1) = [1 0] x1 + [0] [0 0] [1] p(x1) = [0 0] x1 + [0] [0 0] [0] activate(x1) = [1 0] x1 + [1] [0 1] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X))} Weak Trs: { activate(X) -> X , f(X) -> n__f(X) , s(X) -> n__s(X) , activate(n__0()) -> 0() , 0() -> n__0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { activate(n__f(X)) -> f(activate(X)) , activate(n__s(X)) -> s(activate(X))} Weak Trs: { activate(X) -> X , f(X) -> n__f(X) , s(X) -> n__s(X) , activate(n__0()) -> 0() , 0() -> n__0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { f_0(2) -> 1 , f_1(3) -> 1 , f_1(3) -> 3 , 0_0() -> 1 , 0_1() -> 3 , n__f_0(2) -> 1 , n__f_0(2) -> 2 , n__f_0(2) -> 3 , n__f_1(3) -> 1 , n__f_1(3) -> 3 , n__s_0(2) -> 1 , n__s_0(2) -> 2 , n__s_0(2) -> 3 , n__s_1(3) -> 1 , n__s_1(3) -> 3 , n__0_0() -> 1 , n__0_0() -> 2 , n__0_0() -> 3 , n__0_1() -> 3 , s_0(2) -> 1 , s_1(3) -> 1 , s_1(3) -> 3 , activate_0(2) -> 1 , activate_1(2) -> 3} Hurray, we answered YES(?,O(n^1))