Problem:
active(incr(nil())) -> mark(nil())
active(incr(cons(X,L))) -> mark(cons(s(X),incr(L)))
active(adx(nil())) -> mark(nil())
active(adx(cons(X,L))) -> mark(incr(cons(X,adx(L))))
active(nats()) -> mark(adx(zeros()))
active(zeros()) -> mark(cons(0(),zeros()))
active(head(cons(X,L))) -> mark(X)
active(tail(cons(X,L))) -> mark(L)
mark(incr(X)) -> active(incr(mark(X)))
mark(nil()) -> active(nil())
mark(cons(X1,X2)) -> active(cons(mark(X1),X2))
mark(s(X)) -> active(s(mark(X)))
mark(adx(X)) -> active(adx(mark(X)))
mark(nats()) -> active(nats())
mark(zeros()) -> active(zeros())
mark(0()) -> active(0())
mark(head(X)) -> active(head(mark(X)))
mark(tail(X)) -> active(tail(mark(X)))
incr(mark(X)) -> incr(X)
incr(active(X)) -> incr(X)
cons(mark(X1),X2) -> cons(X1,X2)
cons(X1,mark(X2)) -> cons(X1,X2)
cons(active(X1),X2) -> cons(X1,X2)
cons(X1,active(X2)) -> cons(X1,X2)
s(mark(X)) -> s(X)
s(active(X)) -> s(X)
adx(mark(X)) -> adx(X)
adx(active(X)) -> adx(X)
head(mark(X)) -> head(X)
head(active(X)) -> head(X)
tail(mark(X)) -> tail(X)
tail(active(X)) -> tail(X)
Proof:
Bounds Processor:
bound: 9
enrichment: match
automaton:
final states: {12,11,10,9,8,7,6,5}
transitions:
zeros4() -> 45*
cons5(75,58) -> 84*
cons5(61,45) -> 62*
cons5(136,65) -> 66*
cons5(61,65) -> 101*
cons5(89,111) -> 113*
cons5(46,65) -> 66*
cons5(112,88) -> 90*
cons5(53,65) -> 66*
cons5(43,65) -> 66*
cons5(100,65) -> 101*
cons5(75,65) -> 66*
cons5(89,88) -> 90*
cons5(114,94) -> 115*
cons5(46,42) -> 54*
cons5(61,58) -> 99*
cons5(46,58) -> 84*
cons5(43,42) -> 54*
cons5(53,58) -> 84*
cons5(43,58) -> 84*
cons5(75,42) -> 54*
cons5(112,111) -> 113*
active5(115) -> 5*
active5(75) -> 137,122,53,61
active5(112) -> 114*
active5(62) -> 37*
active5(99) -> 73*
active5(101) -> 77*
active5(78) -> 6*
mark5(95) -> 114*
mark5(90) -> 5*
mark5(75) -> 61*
mark5(66) -> 77*
mark5(61) -> 100*
mark5(46) -> 61*
mark5(113) -> 6*
mark5(53) -> 61*
mark5(43) -> 61*
incr3(59) -> 60*
cons6(75,58) -> 84,99
cons6(46,45) -> 62*
cons6(136,65) -> 101*
cons6(120,88) -> 121*
cons6(61,65) -> 101*
cons6(95,94) -> 115*
cons6(46,65) -> 101*
cons6(53,45) -> 62*
cons6(43,45) -> 62*
cons6(112,94) -> 115*
cons6(53,65) -> 101*
cons6(43,65) -> 101*
cons6(107,106) -> 108*
cons6(75,45) -> 62*
cons6(134,94) -> 115*
cons6(75,65) -> 66,101
cons6(136,58) -> 99*
cons6(134,106) -> 108*
cons6(46,58) -> 99*
cons6(122,65) -> 123*
cons6(120,111) -> 127*
cons6(53,58) -> 99*
cons6(43,58) -> 99*
cons6(136,45) -> 62*
05() -> 75*
incr4(66) -> 67*
incr4(73) -> 74*
incr4(58) -> 94*
incr5(65) -> 111*
incr5(77) -> 78*
incr5(99) -> 74*
incr5(84) -> 74*
incr5(59) -> 74*
incr5(58) -> 88*
incr6(65) -> 106*
incr6(101) -> 78*
incr6(66) -> 78*
incr6(123) -> 78*
s4(46) -> 95*
s4(53) -> 95*
s4(43) -> 95*
s5(75) -> 95,89
s5(61) -> 112*
s5(46) -> 95,89
s5(83) -> 89*
s5(53) -> 89*
s5(43) -> 95,89
active6(127) -> 6*
active6(134) -> 120,114
active6(136) -> 137,122,61
active6(121) -> 5*
active6(123) -> 77*
active0(2) -> 5*
active0(4) -> 5*
active0(1) -> 5*
active0(3) -> 5*
mark6(75) -> 122*
mark6(112) -> 120*
mark6(89) -> 120*
mark6(136) -> 122*
mark6(61) -> 122*
mark6(46) -> 122*
mark6(108) -> 6*
mark6(83) -> 122*
mark6(53) -> 122*
mark6(43) -> 122*
incr0(2) -> 7*
incr0(4) -> 7*
incr0(1) -> 7*
incr0(3) -> 7*
s6(100) -> 107*
s6(75) -> 142,134,89,112,107
s6(122) -> 134*
s6(136) -> 112*
s6(61) -> 142,107
s6(46) -> 142,112,107
s6(53) -> 142,138,112,107
s6(43) -> 142,112,107
nil0() -> 1*
cons7(136,65) -> 101,123
cons7(134,111) -> 127*
cons7(61,65) -> 123*
cons7(89,111) -> 127*
cons7(46,65) -> 123*
cons7(130,106) -> 131*
cons7(112,88) -> 121*
cons7(83,65) -> 123*
cons7(53,65) -> 123*
cons7(43,65) -> 123*
cons7(134,88) -> 121*
cons7(138,111) -> 127*
cons7(75,65) -> 123*
cons7(89,88) -> 121*
cons7(147,65) -> 123*
cons7(138,88) -> 121*
cons7(112,111) -> 127*
mark0(2) -> 6*
mark0(4) -> 6*
mark0(1) -> 6*
mark0(3) -> 6*
06() -> 136*
cons0(3,1) -> 8*
cons0(3,3) -> 8*
cons0(4,2) -> 8*
cons0(4,4) -> 8*
cons0(1,2) -> 8*
cons0(1,4) -> 8*
cons0(2,1) -> 8*
cons0(2,3) -> 8*
cons0(3,2) -> 8*
cons0(3,4) -> 8*
cons0(4,1) -> 8*
cons0(4,3) -> 8*
cons0(1,1) -> 8*
cons0(1,3) -> 8*
cons0(2,2) -> 8*
cons0(2,4) -> 8*
active7(147) -> 143,122,137
active7(142) -> 130*
active7(131) -> 6*
active7(138) -> 130,120
s0(2) -> 9*
s0(4) -> 9*
s0(1) -> 9*
s0(3) -> 9*
mark7(100) -> 141*
mark7(75) -> 137*
mark7(122) -> 137*
mark7(107) -> 130*
mark7(134) -> 130*
mark7(136) -> 137*
mark7(61) -> 137*
mark7(46) -> 137*
mark7(53) -> 137*
mark7(43) -> 137*
adx0(2) -> 10*
adx0(4) -> 10*
adx0(1) -> 10*
adx0(3) -> 10*
s7(75) -> 134*
s7(147) -> 134*
s7(137) -> 138*
s7(141) -> 142*
s7(136) -> 142,138,134,107
s7(61) -> 134*
s7(46) -> 134*
s7(83) -> 138,134
s7(53) -> 134*
s7(43) -> 134*
nats0() -> 2*
cons8(142,106) -> 131*
cons8(107,106) -> 131*
cons8(144,106) -> 131*
cons8(134,106) -> 131*
cons8(138,106) -> 131*
zeros0() -> 3*
s8(100) -> 142*
s8(75) -> 138*
s8(147) -> 144,138
s8(122) -> 138*
s8(136) -> 138*
s8(61) -> 138*
s8(46) -> 138*
s8(143) -> 144*
s8(53) -> 138*
s8(43) -> 138*
00() -> 4*
active8(149) -> 143*
active8(144) -> 130*
head0(2) -> 11*
head0(4) -> 11*
head0(1) -> 11*
head0(3) -> 11*
mark8(75) -> 143*
mark8(147) -> 143*
mark8(136) -> 143*
mark8(61) -> 143*
mark8(46) -> 143*
mark8(83) -> 143*
mark8(53) -> 143*
mark8(43) -> 143*
tail0(2) -> 12*
tail0(4) -> 12*
tail0(1) -> 12*
tail0(3) -> 12*
s9(75) -> 144*
s9(147) -> 144*
s9(149) -> 144*
s9(136) -> 144*
s9(61) -> 144*
s9(46) -> 144*
s9(83) -> 144*
s9(53) -> 144*
s9(43) -> 144*
active1(20) -> 6*
active1(15) -> 6*
active1(17) -> 6*
07() -> 147*
01() -> 17*
08() -> 149*
zeros1() -> 15*
nats1() -> 20*
nil1() -> 20*
mark1(16) -> 5*
cons1(17,15) -> 16*
adx1(15) -> 16*
active2(30) -> 5*
active2(25) -> 29*
active2(23) -> 31*
adx2(31) -> 30*
adx2(23) -> 24*
mark2(15) -> 31*
mark2(17) -> 29*
mark2(24) -> 6*
cons2(25,23) -> 24*
cons2(29,15) -> 30*
02() -> 25*
zeros2() -> 23*
adx3(15) -> 30*
adx3(42) -> 58*
adx3(37) -> 36*
adx3(54) -> 30*
adx3(44) -> 30*
adx3(23) -> 30*
cons3(25,15) -> 30*
cons3(35,23) -> 36*
cons3(17,15) -> 30*
cons3(46,58) -> 59*
cons3(43,42) -> 44*
cons3(53,58) -> 59*
cons3(43,58) -> 59*
active3(42) -> 37*
active3(36) -> 6*
active3(43) -> 35*
mark3(60) -> 5*
mark3(25) -> 35*
mark3(44) -> 31*
mark3(23) -> 37*
adx4(45) -> 65*
adx4(62) -> 36*
adx4(47) -> 36*
adx4(42) -> 36*
adx4(23) -> 36*
cons4(46,45) -> 47*
cons4(61,65) -> 66*
cons4(43,23) -> 36*
cons4(95,94) -> 96*
cons4(46,65) -> 66*
cons4(25,23) -> 36*
cons4(75,65) -> 66*
cons4(46,58) -> 59*
cons4(53,42) -> 54*
cons4(83,58) -> 84*
cons4(53,58) -> 84*
cons4(43,58) -> 59*
cons4(75,58) -> 59*
03() -> 43*
zeros3() -> 42*
active4(84) -> 73*
active4(74) -> 5*
active4(54) -> 31*
active4(46) -> 137,53
mark4(67) -> 6*
mark4(47) -> 37*
mark4(59) -> 73*
mark4(96) -> 5*
mark4(46) -> 53*
mark4(53) -> 83*
mark4(43) -> 53*
04() -> 46*
problem:
Qed