We consider the following Problem: Strict Trs: { active(f(X)) -> mark(g(h(f(X)))) , mark(f(X)) -> active(f(mark(X))) , mark(g(X)) -> active(g(X)) , mark(h(X)) -> active(h(mark(X))) , f(mark(X)) -> f(X) , f(active(X)) -> f(X) , g(mark(X)) -> g(X) , g(active(X)) -> g(X) , h(mark(X)) -> h(X) , h(active(X)) -> h(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { active(f(X)) -> mark(g(h(f(X)))) , mark(f(X)) -> active(f(mark(X))) , mark(g(X)) -> active(g(X)) , mark(h(X)) -> active(h(mark(X))) , f(mark(X)) -> f(X) , f(active(X)) -> f(X) , g(mark(X)) -> g(X) , g(active(X)) -> g(X) , h(mark(X)) -> h(X) , h(active(X)) -> h(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { f(mark(X)) -> f(X) , f(active(X)) -> f(X) , h(mark(X)) -> h(X) , h(active(X)) -> h(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(active) = {1}, Uargs(f) = {1}, Uargs(mark) = {}, Uargs(g) = {}, Uargs(h) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: active(x1) = [1 0] x1 + [1] [0 1] [1] f(x1) = [1 0] x1 + [0] [0 0] [0] mark(x1) = [1 0] x1 + [1] [0 0] [1] g(x1) = [0 0] x1 + [0] [0 1] [0] h(x1) = [1 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { active(f(X)) -> mark(g(h(f(X)))) , mark(f(X)) -> active(f(mark(X))) , mark(g(X)) -> active(g(X)) , mark(h(X)) -> active(h(mark(X))) , g(mark(X)) -> g(X) , g(active(X)) -> g(X)} Weak Trs: { f(mark(X)) -> f(X) , f(active(X)) -> f(X) , h(mark(X)) -> h(X) , h(active(X)) -> h(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {mark(g(X)) -> active(g(X))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(active) = {1}, Uargs(f) = {1}, Uargs(mark) = {}, Uargs(g) = {}, Uargs(h) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: active(x1) = [1 0] x1 + [1] [0 0] [1] f(x1) = [1 0] x1 + [0] [0 0] [1] mark(x1) = [1 0] x1 + [3] [0 0] [1] g(x1) = [0 0] x1 + [0] [0 0] [1] h(x1) = [1 0] x1 + [0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { active(f(X)) -> mark(g(h(f(X)))) , mark(f(X)) -> active(f(mark(X))) , mark(h(X)) -> active(h(mark(X))) , g(mark(X)) -> g(X) , g(active(X)) -> g(X)} Weak Trs: { mark(g(X)) -> active(g(X)) , f(mark(X)) -> f(X) , f(active(X)) -> f(X) , h(mark(X)) -> h(X) , h(active(X)) -> h(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {active(f(X)) -> mark(g(h(f(X))))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(active) = {1}, Uargs(f) = {1}, Uargs(mark) = {}, Uargs(g) = {}, Uargs(h) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: active(x1) = [1 0] x1 + [1] [0 0] [1] f(x1) = [1 0] x1 + [2] [0 0] [1] mark(x1) = [1 0] x1 + [1] [0 1] [1] g(x1) = [0 0] x1 + [0] [0 0] [0] h(x1) = [1 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { mark(f(X)) -> active(f(mark(X))) , mark(h(X)) -> active(h(mark(X))) , g(mark(X)) -> g(X) , g(active(X)) -> g(X)} Weak Trs: { active(f(X)) -> mark(g(h(f(X)))) , mark(g(X)) -> active(g(X)) , f(mark(X)) -> f(X) , f(active(X)) -> f(X) , h(mark(X)) -> h(X) , h(active(X)) -> h(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { g(mark(X)) -> g(X) , g(active(X)) -> g(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(active) = {1}, Uargs(f) = {1}, Uargs(mark) = {}, Uargs(g) = {}, Uargs(h) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: active(x1) = [1 0] x1 + [1] [0 0] [1] f(x1) = [1 0] x1 + [1] [0 0] [1] mark(x1) = [1 0] x1 + [1] [0 0] [1] g(x1) = [1 0] x1 + [0] [0 0] [1] h(x1) = [1 0] x1 + [0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { mark(f(X)) -> active(f(mark(X))) , mark(h(X)) -> active(h(mark(X)))} Weak Trs: { g(mark(X)) -> g(X) , g(active(X)) -> g(X) , active(f(X)) -> mark(g(h(f(X)))) , mark(g(X)) -> active(g(X)) , f(mark(X)) -> f(X) , f(active(X)) -> f(X) , h(mark(X)) -> h(X) , h(active(X)) -> h(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { mark(f(X)) -> active(f(mark(X))) , mark(h(X)) -> active(h(mark(X)))} Weak Trs: { g(mark(X)) -> g(X) , g(active(X)) -> g(X) , active(f(X)) -> mark(g(h(f(X)))) , mark(g(X)) -> active(g(X)) , f(mark(X)) -> f(X) , f(active(X)) -> f(X) , h(mark(X)) -> h(X) , h(active(X)) -> h(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 0. The enriched problem is compatible with the following automaton: { active_0(2) -> 1 , f_0(2) -> 1 , mark_0(2) -> 1 , g_0(2) -> 1 , h_0(2) -> 1} Hurray, we answered YES(?,O(n^1))