We consider the following Problem:
Strict Trs:
{ f(X) -> g(n__h(n__f(X)))
, h(X) -> n__h(X)
, f(X) -> n__f(X)
, activate(n__h(X)) -> h(activate(X))
, activate(n__f(X)) -> f(activate(X))
, activate(X) -> X}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
We consider the following Problem:
Strict Trs:
{ f(X) -> g(n__h(n__f(X)))
, h(X) -> n__h(X)
, f(X) -> n__f(X)
, activate(n__h(X)) -> h(activate(X))
, activate(n__f(X)) -> f(activate(X))
, activate(X) -> X}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {f(X) -> g(n__h(n__f(X)))}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(f) = {1}, Uargs(g) = {}, Uargs(n__h) = {}, Uargs(n__f) = {},
Uargs(h) = {1}, Uargs(activate) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1) = [1 0] x1 + [2]
[0 0] [1]
g(x1) = [0 0] x1 + [1]
[0 0] [1]
n__h(x1) = [0 0] x1 + [0]
[1 1] [0]
n__f(x1) = [0 0] x1 + [0]
[1 1] [0]
h(x1) = [1 0] x1 + [0]
[0 0] [1]
activate(x1) = [1 1] x1 + [1]
[0 0] [1]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ h(X) -> n__h(X)
, f(X) -> n__f(X)
, activate(n__h(X)) -> h(activate(X))
, activate(n__f(X)) -> f(activate(X))
, activate(X) -> X}
Weak Trs: {f(X) -> g(n__h(n__f(X)))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {f(X) -> n__f(X)}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(f) = {1}, Uargs(g) = {}, Uargs(n__h) = {}, Uargs(n__f) = {},
Uargs(h) = {1}, Uargs(activate) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1) = [1 0] x1 + [2]
[0 0] [1]
g(x1) = [0 0] x1 + [1]
[0 0] [1]
n__h(x1) = [1 0] x1 + [0]
[0 0] [0]
n__f(x1) = [1 0] x1 + [0]
[0 0] [0]
h(x1) = [1 0] x1 + [0]
[0 0] [1]
activate(x1) = [1 0] x1 + [1]
[1 0] [1]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ h(X) -> n__h(X)
, activate(n__h(X)) -> h(activate(X))
, activate(n__f(X)) -> f(activate(X))
, activate(X) -> X}
Weak Trs:
{ f(X) -> n__f(X)
, f(X) -> g(n__h(n__f(X)))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {h(X) -> n__h(X)}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(f) = {1}, Uargs(g) = {}, Uargs(n__h) = {}, Uargs(n__f) = {},
Uargs(h) = {1}, Uargs(activate) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1) = [1 0] x1 + [0]
[0 0] [1]
g(x1) = [0 0] x1 + [0]
[0 0] [1]
n__h(x1) = [1 0] x1 + [0]
[0 0] [0]
n__f(x1) = [1 0] x1 + [0]
[0 0] [0]
h(x1) = [1 0] x1 + [2]
[0 0] [0]
activate(x1) = [1 0] x1 + [1]
[1 0] [1]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ activate(n__h(X)) -> h(activate(X))
, activate(n__f(X)) -> f(activate(X))
, activate(X) -> X}
Weak Trs:
{ h(X) -> n__h(X)
, f(X) -> n__f(X)
, f(X) -> g(n__h(n__f(X)))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {activate(X) -> X}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(f) = {1}, Uargs(g) = {}, Uargs(n__h) = {}, Uargs(n__f) = {},
Uargs(h) = {1}, Uargs(activate) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
f(x1) = [1 3] x1 + [0]
[0 0] [1]
g(x1) = [0 0] x1 + [0]
[0 0] [1]
n__h(x1) = [1 0] x1 + [0]
[0 1] [2]
n__f(x1) = [1 3] x1 + [0]
[0 0] [0]
h(x1) = [1 0] x1 + [0]
[0 1] [3]
activate(x1) = [1 0] x1 + [2]
[0 1] [2]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ activate(n__h(X)) -> h(activate(X))
, activate(n__f(X)) -> f(activate(X))}
Weak Trs:
{ activate(X) -> X
, h(X) -> n__h(X)
, f(X) -> n__f(X)
, f(X) -> g(n__h(n__f(X)))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
We consider the following Problem:
Strict Trs:
{ activate(n__h(X)) -> h(activate(X))
, activate(n__f(X)) -> f(activate(X))}
Weak Trs:
{ activate(X) -> X
, h(X) -> n__h(X)
, f(X) -> n__f(X)
, f(X) -> g(n__h(n__f(X)))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ f_0(2) -> 1
, f_1(3) -> 1
, f_1(3) -> 3
, g_0(2) -> 1
, g_0(2) -> 2
, g_0(2) -> 3
, g_1(1) -> 1
, g_1(1) -> 3
, g_1(4) -> 1
, n__h_0(2) -> 1
, n__h_0(2) -> 2
, n__h_0(2) -> 3
, n__h_1(3) -> 1
, n__h_1(3) -> 3
, n__h_1(5) -> 4
, n__f_0(2) -> 1
, n__f_0(2) -> 2
, n__f_0(2) -> 3
, n__f_1(2) -> 5
, n__f_1(3) -> 1
, n__f_1(3) -> 3
, h_0(2) -> 1
, h_1(3) -> 1
, h_1(3) -> 3
, activate_0(2) -> 1
, activate_1(2) -> 3}
Hurray, we answered YES(?,O(n^1))