We consider the following Problem: Strict Trs: { active(f(X)) -> mark(g(h(f(X)))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , h(ok(X)) -> ok(h(X)) , top(mark(X)) -> top(proper(X)) , top(ok(X)) -> top(active(X))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { active(f(X)) -> mark(g(h(f(X)))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , h(ok(X)) -> ok(h(X)) , top(mark(X)) -> top(proper(X)) , top(ok(X)) -> top(active(X))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {top(mark(X)) -> top(proper(X))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(active) = {}, Uargs(f) = {1}, Uargs(mark) = {1}, Uargs(g) = {1}, Uargs(h) = {1}, Uargs(proper) = {}, Uargs(ok) = {1}, Uargs(top) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: active(x1) = [1 0] x1 + [1] [0 1] [0] f(x1) = [1 1] x1 + [0] [0 0] [0] mark(x1) = [1 0] x1 + [1] [0 1] [1] g(x1) = [1 0] x1 + [0] [0 0] [0] h(x1) = [1 0] x1 + [0] [0 0] [1] proper(x1) = [0 0] x1 + [0] [0 0] [1] ok(x1) = [1 0] x1 + [0] [0 1] [0] top(x1) = [1 0] x1 + [0] [0 1] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { active(f(X)) -> mark(g(h(f(X)))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , h(ok(X)) -> ok(h(X)) , top(ok(X)) -> top(active(X))} Weak Trs: {top(mark(X)) -> top(proper(X))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {active(f(X)) -> mark(g(h(f(X))))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(active) = {}, Uargs(f) = {1}, Uargs(mark) = {1}, Uargs(g) = {1}, Uargs(h) = {1}, Uargs(proper) = {}, Uargs(ok) = {1}, Uargs(top) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: active(x1) = [1 0] x1 + [1] [0 1] [1] f(x1) = [1 1] x1 + [0] [0 0] [0] mark(x1) = [1 0] x1 + [0] [0 1] [1] g(x1) = [1 0] x1 + [0] [0 0] [0] h(x1) = [1 0] x1 + [0] [0 0] [0] proper(x1) = [0 0] x1 + [0] [0 0] [0] ok(x1) = [1 0] x1 + [0] [0 1] [0] top(x1) = [1 0] x1 + [1] [0 1] [3] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , h(ok(X)) -> ok(h(X)) , top(ok(X)) -> top(active(X))} Weak Trs: { active(f(X)) -> mark(g(h(f(X)))) , top(mark(X)) -> top(proper(X))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {top(ok(X)) -> top(active(X))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(active) = {}, Uargs(f) = {1}, Uargs(mark) = {1}, Uargs(g) = {1}, Uargs(h) = {1}, Uargs(proper) = {}, Uargs(ok) = {1}, Uargs(top) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: active(x1) = [1 0] x1 + [0] [0 0] [0] f(x1) = [1 0] x1 + [0] [0 0] [1] mark(x1) = [1 0] x1 + [0] [0 0] [0] g(x1) = [1 0] x1 + [0] [0 0] [1] h(x1) = [1 0] x1 + [0] [0 0] [1] proper(x1) = [0 0] x1 + [0] [0 1] [0] ok(x1) = [1 0] x1 + [2] [0 0] [1] top(x1) = [1 0] x1 + [0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , h(ok(X)) -> ok(h(X))} Weak Trs: { top(ok(X)) -> top(active(X)) , active(f(X)) -> mark(g(h(f(X)))) , top(mark(X)) -> top(proper(X))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {proper(f(X)) -> f(proper(X))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(active) = {}, Uargs(f) = {1}, Uargs(mark) = {1}, Uargs(g) = {1}, Uargs(h) = {1}, Uargs(proper) = {}, Uargs(ok) = {1}, Uargs(top) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: active(x1) = [1 3] x1 + [1] [0 0] [0] f(x1) = [1 0] x1 + [0] [0 1] [1] mark(x1) = [1 1] x1 + [0] [0 0] [0] g(x1) = [1 0] x1 + [0] [0 1] [0] h(x1) = [1 0] x1 + [0] [0 1] [0] proper(x1) = [0 1] x1 + [0] [0 1] [0] ok(x1) = [1 3] x1 + [1] [0 0] [0] top(x1) = [1 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , h(ok(X)) -> ok(h(X))} Weak Trs: { proper(f(X)) -> f(proper(X)) , top(ok(X)) -> top(active(X)) , active(f(X)) -> mark(g(h(f(X)))) , top(mark(X)) -> top(proper(X))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {proper(g(X)) -> g(proper(X))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(active) = {}, Uargs(f) = {1}, Uargs(mark) = {1}, Uargs(g) = {1}, Uargs(h) = {1}, Uargs(proper) = {}, Uargs(ok) = {1}, Uargs(top) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: active(x1) = [1 1] x1 + [1] [0 0] [0] f(x1) = [1 0] x1 + [0] [0 1] [0] mark(x1) = [1 1] x1 + [0] [0 0] [0] g(x1) = [1 0] x1 + [0] [0 1] [1] h(x1) = [1 0] x1 + [0] [0 1] [0] proper(x1) = [0 1] x1 + [0] [0 1] [0] ok(x1) = [1 1] x1 + [1] [0 0] [0] top(x1) = [1 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , proper(h(X)) -> h(proper(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , h(ok(X)) -> ok(h(X))} Weak Trs: { proper(g(X)) -> g(proper(X)) , proper(f(X)) -> f(proper(X)) , top(ok(X)) -> top(active(X)) , active(f(X)) -> mark(g(h(f(X)))) , top(mark(X)) -> top(proper(X))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {proper(h(X)) -> h(proper(X))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(active) = {}, Uargs(f) = {1}, Uargs(mark) = {1}, Uargs(g) = {1}, Uargs(h) = {1}, Uargs(proper) = {}, Uargs(ok) = {1}, Uargs(top) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: active(x1) = [1 1] x1 + [1] [0 0] [0] f(x1) = [1 0] x1 + [0] [0 1] [0] mark(x1) = [1 1] x1 + [0] [0 0] [0] g(x1) = [1 0] x1 + [0] [0 1] [0] h(x1) = [1 0] x1 + [0] [0 1] [1] proper(x1) = [0 1] x1 + [0] [0 1] [0] ok(x1) = [1 1] x1 + [1] [0 0] [0] top(x1) = [1 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , h(ok(X)) -> ok(h(X))} Weak Trs: { proper(h(X)) -> h(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(f(X)) -> f(proper(X)) , top(ok(X)) -> top(active(X)) , active(f(X)) -> mark(g(h(f(X)))) , top(mark(X)) -> top(proper(X))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , h(ok(X)) -> ok(h(X))} Weak Trs: { proper(h(X)) -> h(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(f(X)) -> f(proper(X)) , top(ok(X)) -> top(active(X)) , active(f(X)) -> mark(g(h(f(X)))) , top(mark(X)) -> top(proper(X))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { active_0(3) -> 1 , active_0(7) -> 1 , f_0(3) -> 2 , f_0(7) -> 2 , f_1(3) -> 9 , f_1(7) -> 9 , mark_0(3) -> 3 , mark_0(7) -> 3 , mark_1(9) -> 2 , mark_1(9) -> 9 , mark_1(10) -> 5 , mark_1(10) -> 10 , g_0(3) -> 4 , g_0(7) -> 4 , g_1(3) -> 11 , g_1(7) -> 11 , h_0(3) -> 5 , h_0(7) -> 5 , h_1(3) -> 10 , h_1(7) -> 10 , proper_0(3) -> 6 , proper_0(7) -> 6 , ok_0(3) -> 7 , ok_0(7) -> 7 , ok_1(9) -> 2 , ok_1(9) -> 9 , ok_1(10) -> 5 , ok_1(10) -> 10 , ok_1(11) -> 4 , ok_1(11) -> 11 , top_0(1) -> 8 , top_0(3) -> 8 , top_0(6) -> 8 , top_0(7) -> 8} Hurray, we answered YES(?,O(n^1))