We consider the following Problem:

  Strict Trs:
    {  active(f(X)) -> mark(g(h(f(X))))
     , active(f(X)) -> f(active(X))
     , active(h(X)) -> h(active(X))
     , f(mark(X)) -> mark(f(X))
     , h(mark(X)) -> mark(h(X))
     , proper(f(X)) -> f(proper(X))
     , proper(g(X)) -> g(proper(X))
     , proper(h(X)) -> h(proper(X))
     , f(ok(X)) -> ok(f(X))
     , g(ok(X)) -> ok(g(X))
     , h(ok(X)) -> ok(h(X))
     , top(mark(X)) -> top(proper(X))
     , top(ok(X)) -> top(active(X))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  We consider the following Problem:
  
    Strict Trs:
      {  active(f(X)) -> mark(g(h(f(X))))
       , active(f(X)) -> f(active(X))
       , active(h(X)) -> h(active(X))
       , f(mark(X)) -> mark(f(X))
       , h(mark(X)) -> mark(h(X))
       , proper(f(X)) -> f(proper(X))
       , proper(g(X)) -> g(proper(X))
       , proper(h(X)) -> h(proper(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))
       , h(ok(X)) -> ok(h(X))
       , top(mark(X)) -> top(proper(X))
       , top(ok(X)) -> top(active(X))}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component: {top(mark(X)) -> top(proper(X))}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(active) = {}, Uargs(f) = {1}, Uargs(mark) = {1},
        Uargs(g) = {1}, Uargs(h) = {1}, Uargs(proper) = {},
        Uargs(ok) = {1}, Uargs(top) = {1}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       active(x1) = [1 0] x1 + [1]
                    [0 1]      [0]
       f(x1) = [1 1] x1 + [0]
               [0 0]      [0]
       mark(x1) = [1 0] x1 + [1]
                  [0 1]      [1]
       g(x1) = [1 0] x1 + [0]
               [0 0]      [0]
       h(x1) = [1 0] x1 + [0]
               [0 0]      [1]
       proper(x1) = [0 0] x1 + [0]
                    [0 0]      [1]
       ok(x1) = [1 0] x1 + [0]
                [0 1]      [0]
       top(x1) = [1 0] x1 + [0]
                 [0 1]      [0]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  active(f(X)) -> mark(g(h(f(X))))
         , active(f(X)) -> f(active(X))
         , active(h(X)) -> h(active(X))
         , f(mark(X)) -> mark(f(X))
         , h(mark(X)) -> mark(h(X))
         , proper(f(X)) -> f(proper(X))
         , proper(g(X)) -> g(proper(X))
         , proper(h(X)) -> h(proper(X))
         , f(ok(X)) -> ok(f(X))
         , g(ok(X)) -> ok(g(X))
         , h(ok(X)) -> ok(h(X))
         , top(ok(X)) -> top(active(X))}
      Weak Trs: {top(mark(X)) -> top(proper(X))}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component: {active(f(X)) -> mark(g(h(f(X))))}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(active) = {}, Uargs(f) = {1}, Uargs(mark) = {1},
          Uargs(g) = {1}, Uargs(h) = {1}, Uargs(proper) = {},
          Uargs(ok) = {1}, Uargs(top) = {1}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         active(x1) = [1 0] x1 + [1]
                      [0 1]      [1]
         f(x1) = [1 1] x1 + [0]
                 [0 0]      [0]
         mark(x1) = [1 0] x1 + [0]
                    [0 1]      [1]
         g(x1) = [1 0] x1 + [0]
                 [0 0]      [0]
         h(x1) = [1 0] x1 + [0]
                 [0 0]      [0]
         proper(x1) = [0 0] x1 + [0]
                      [0 0]      [0]
         ok(x1) = [1 0] x1 + [0]
                  [0 1]      [0]
         top(x1) = [1 0] x1 + [1]
                   [0 1]      [3]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  active(f(X)) -> f(active(X))
           , active(h(X)) -> h(active(X))
           , f(mark(X)) -> mark(f(X))
           , h(mark(X)) -> mark(h(X))
           , proper(f(X)) -> f(proper(X))
           , proper(g(X)) -> g(proper(X))
           , proper(h(X)) -> h(proper(X))
           , f(ok(X)) -> ok(f(X))
           , g(ok(X)) -> ok(g(X))
           , h(ok(X)) -> ok(h(X))
           , top(ok(X)) -> top(active(X))}
        Weak Trs:
          {  active(f(X)) -> mark(g(h(f(X))))
           , top(mark(X)) -> top(proper(X))}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component: {top(ok(X)) -> top(active(X))}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(active) = {}, Uargs(f) = {1}, Uargs(mark) = {1},
            Uargs(g) = {1}, Uargs(h) = {1}, Uargs(proper) = {},
            Uargs(ok) = {1}, Uargs(top) = {1}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           active(x1) = [1 0] x1 + [0]
                        [0 0]      [0]
           f(x1) = [1 0] x1 + [0]
                   [0 0]      [1]
           mark(x1) = [1 0] x1 + [0]
                      [0 0]      [0]
           g(x1) = [1 0] x1 + [0]
                   [0 0]      [1]
           h(x1) = [1 0] x1 + [0]
                   [0 0]      [1]
           proper(x1) = [0 0] x1 + [0]
                        [0 1]      [0]
           ok(x1) = [1 0] x1 + [2]
                    [0 0]      [1]
           top(x1) = [1 0] x1 + [0]
                     [0 0]      [1]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  active(f(X)) -> f(active(X))
             , active(h(X)) -> h(active(X))
             , f(mark(X)) -> mark(f(X))
             , h(mark(X)) -> mark(h(X))
             , proper(f(X)) -> f(proper(X))
             , proper(g(X)) -> g(proper(X))
             , proper(h(X)) -> h(proper(X))
             , f(ok(X)) -> ok(f(X))
             , g(ok(X)) -> ok(g(X))
             , h(ok(X)) -> ok(h(X))}
          Weak Trs:
            {  top(ok(X)) -> top(active(X))
             , active(f(X)) -> mark(g(h(f(X))))
             , top(mark(X)) -> top(proper(X))}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component: {proper(f(X)) -> f(proper(X))}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            The following argument positions are usable:
              Uargs(active) = {}, Uargs(f) = {1}, Uargs(mark) = {1},
              Uargs(g) = {1}, Uargs(h) = {1}, Uargs(proper) = {},
              Uargs(ok) = {1}, Uargs(top) = {1}
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             active(x1) = [1 3] x1 + [1]
                          [0 0]      [0]
             f(x1) = [1 0] x1 + [0]
                     [0 1]      [1]
             mark(x1) = [1 1] x1 + [0]
                        [0 0]      [0]
             g(x1) = [1 0] x1 + [0]
                     [0 1]      [0]
             h(x1) = [1 0] x1 + [0]
                     [0 1]      [0]
             proper(x1) = [0 1] x1 + [0]
                          [0 1]      [0]
             ok(x1) = [1 3] x1 + [1]
                      [0 0]      [0]
             top(x1) = [1 0] x1 + [0]
                       [0 0]      [0]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Strict Trs:
              {  active(f(X)) -> f(active(X))
               , active(h(X)) -> h(active(X))
               , f(mark(X)) -> mark(f(X))
               , h(mark(X)) -> mark(h(X))
               , proper(g(X)) -> g(proper(X))
               , proper(h(X)) -> h(proper(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , h(ok(X)) -> ok(h(X))}
            Weak Trs:
              {  proper(f(X)) -> f(proper(X))
               , top(ok(X)) -> top(active(X))
               , active(f(X)) -> mark(g(h(f(X))))
               , top(mark(X)) -> top(proper(X))}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            The weightgap principle applies, where following rules are oriented strictly:
            
            TRS Component: {proper(g(X)) -> g(proper(X))}
            
            Interpretation of nonconstant growth:
            -------------------------------------
              The following argument positions are usable:
                Uargs(active) = {}, Uargs(f) = {1}, Uargs(mark) = {1},
                Uargs(g) = {1}, Uargs(h) = {1}, Uargs(proper) = {},
                Uargs(ok) = {1}, Uargs(top) = {1}
              We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
              Interpretation Functions:
               active(x1) = [1 1] x1 + [1]
                            [0 0]      [0]
               f(x1) = [1 0] x1 + [0]
                       [0 1]      [0]
               mark(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
               g(x1) = [1 0] x1 + [0]
                       [0 1]      [1]
               h(x1) = [1 0] x1 + [0]
                       [0 1]      [0]
               proper(x1) = [0 1] x1 + [0]
                            [0 1]      [0]
               ok(x1) = [1 1] x1 + [1]
                        [0 0]      [0]
               top(x1) = [1 0] x1 + [0]
                         [0 0]      [0]
            
            The strictly oriented rules are moved into the weak component.
            
            We consider the following Problem:
            
              Strict Trs:
                {  active(f(X)) -> f(active(X))
                 , active(h(X)) -> h(active(X))
                 , f(mark(X)) -> mark(f(X))
                 , h(mark(X)) -> mark(h(X))
                 , proper(h(X)) -> h(proper(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))
                 , h(ok(X)) -> ok(h(X))}
              Weak Trs:
                {  proper(g(X)) -> g(proper(X))
                 , proper(f(X)) -> f(proper(X))
                 , top(ok(X)) -> top(active(X))
                 , active(f(X)) -> mark(g(h(f(X))))
                 , top(mark(X)) -> top(proper(X))}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(?,O(n^1))
            
            Proof:
              The weightgap principle applies, where following rules are oriented strictly:
              
              TRS Component: {proper(h(X)) -> h(proper(X))}
              
              Interpretation of nonconstant growth:
              -------------------------------------
                The following argument positions are usable:
                  Uargs(active) = {}, Uargs(f) = {1}, Uargs(mark) = {1},
                  Uargs(g) = {1}, Uargs(h) = {1}, Uargs(proper) = {},
                  Uargs(ok) = {1}, Uargs(top) = {1}
                We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                Interpretation Functions:
                 active(x1) = [1 1] x1 + [1]
                              [0 0]      [0]
                 f(x1) = [1 0] x1 + [0]
                         [0 1]      [0]
                 mark(x1) = [1 1] x1 + [0]
                            [0 0]      [0]
                 g(x1) = [1 0] x1 + [0]
                         [0 1]      [0]
                 h(x1) = [1 0] x1 + [0]
                         [0 1]      [1]
                 proper(x1) = [0 1] x1 + [0]
                              [0 1]      [0]
                 ok(x1) = [1 1] x1 + [1]
                          [0 0]      [0]
                 top(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
              
              The strictly oriented rules are moved into the weak component.
              
              We consider the following Problem:
              
                Strict Trs:
                  {  active(f(X)) -> f(active(X))
                   , active(h(X)) -> h(active(X))
                   , f(mark(X)) -> mark(f(X))
                   , h(mark(X)) -> mark(h(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))
                   , h(ok(X)) -> ok(h(X))}
                Weak Trs:
                  {  proper(h(X)) -> h(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , proper(f(X)) -> f(proper(X))
                   , top(ok(X)) -> top(active(X))
                   , active(f(X)) -> mark(g(h(f(X))))
                   , top(mark(X)) -> top(proper(X))}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(?,O(n^1))
              
              Proof:
                We consider the following Problem:
                
                  Strict Trs:
                    {  active(f(X)) -> f(active(X))
                     , active(h(X)) -> h(active(X))
                     , f(mark(X)) -> mark(f(X))
                     , h(mark(X)) -> mark(h(X))
                     , f(ok(X)) -> ok(f(X))
                     , g(ok(X)) -> ok(g(X))
                     , h(ok(X)) -> ok(h(X))}
                  Weak Trs:
                    {  proper(h(X)) -> h(proper(X))
                     , proper(g(X)) -> g(proper(X))
                     , proper(f(X)) -> f(proper(X))
                     , top(ok(X)) -> top(active(X))
                     , active(f(X)) -> mark(g(h(f(X))))
                     , top(mark(X)) -> top(proper(X))}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(?,O(n^1))
                
                Proof:
                  The problem is match-bounded by 1.
                  The enriched problem is compatible with the following automaton:
                  {  active_0(3) -> 1
                   , active_0(7) -> 1
                   , f_0(3) -> 2
                   , f_0(7) -> 2
                   , f_1(3) -> 9
                   , f_1(7) -> 9
                   , mark_0(3) -> 3
                   , mark_0(7) -> 3
                   , mark_1(9) -> 2
                   , mark_1(9) -> 9
                   , mark_1(10) -> 5
                   , mark_1(10) -> 10
                   , g_0(3) -> 4
                   , g_0(7) -> 4
                   , g_1(3) -> 11
                   , g_1(7) -> 11
                   , h_0(3) -> 5
                   , h_0(7) -> 5
                   , h_1(3) -> 10
                   , h_1(7) -> 10
                   , proper_0(3) -> 6
                   , proper_0(7) -> 6
                   , ok_0(3) -> 7
                   , ok_0(7) -> 7
                   , ok_1(9) -> 2
                   , ok_1(9) -> 9
                   , ok_1(10) -> 5
                   , ok_1(10) -> 10
                   , ok_1(11) -> 4
                   , ok_1(11) -> 11
                   , top_0(1) -> 8
                   , top_0(3) -> 8
                   , top_0(6) -> 8
                   , top_0(7) -> 8}

Hurray, we answered YES(?,O(n^1))