(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(f(a, X, X)) → mark(f(X, b, b))
active(b) → mark(a)
mark(f(X1, X2, X3)) → active(f(X1, mark(X2), X3))
mark(a) → active(a)
mark(b) → active(b)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(a, z0, z0)) → mark(f(z0, b, b))
active(b) → mark(a)
mark(f(z0, z1, z2)) → active(f(z0, mark(z1), z2))
mark(a) → active(a)
mark(b) → active(b)
f(mark(z0), z1, z2) → f(z0, z1, z2)
f(z0, mark(z1), z2) → f(z0, z1, z2)
f(z0, z1, mark(z2)) → f(z0, z1, z2)
f(active(z0), z1, z2) → f(z0, z1, z2)
f(z0, active(z1), z2) → f(z0, z1, z2)
f(z0, z1, active(z2)) → f(z0, z1, z2)
Tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
ACTIVE(b) → c1(MARK(a))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, mark(z1), z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(a) → c3(ACTIVE(a))
MARK(b) → c4(ACTIVE(b))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
S tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
ACTIVE(b) → c1(MARK(a))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, mark(z1), z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(a) → c3(ACTIVE(a))
MARK(b) → c4(ACTIVE(b))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
K tuples:none
Defined Rule Symbols:
active, mark, f
Defined Pair Symbols:
ACTIVE, MARK, F
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing nodes:
MARK(a) → c3(ACTIVE(a))
ACTIVE(b) → c1(MARK(a))
MARK(b) → c4(ACTIVE(b))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(a, z0, z0)) → mark(f(z0, b, b))
active(b) → mark(a)
mark(f(z0, z1, z2)) → active(f(z0, mark(z1), z2))
mark(a) → active(a)
mark(b) → active(b)
f(mark(z0), z1, z2) → f(z0, z1, z2)
f(z0, mark(z1), z2) → f(z0, z1, z2)
f(z0, z1, mark(z2)) → f(z0, z1, z2)
f(active(z0), z1, z2) → f(z0, z1, z2)
f(z0, active(z1), z2) → f(z0, z1, z2)
f(z0, z1, active(z2)) → f(z0, z1, z2)
Tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, mark(z1), z2)), F(z0, mark(z1), z2), MARK(z1))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
S tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, mark(z1), z2)), F(z0, mark(z1), z2), MARK(z1))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
K tuples:none
Defined Rule Symbols:
active, mark, f
Defined Pair Symbols:
ACTIVE, MARK, F
Compound Symbols:
c, c2, c5, c6, c7, c8, c9, c10
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
We considered the (Usable) Rules:
mark(f(z0, z1, z2)) → active(f(z0, mark(z1), z2))
mark(a) → active(a)
mark(b) → active(b)
active(f(a, z0, z0)) → mark(f(z0, b, b))
active(b) → mark(a)
f(z0, mark(z1), z2) → f(z0, z1, z2)
f(mark(z0), z1, z2) → f(z0, z1, z2)
f(z0, z1, mark(z2)) → f(z0, z1, z2)
f(active(z0), z1, z2) → f(z0, z1, z2)
f(z0, active(z1), z2) → f(z0, z1, z2)
f(z0, z1, active(z2)) → f(z0, z1, z2)
And the Tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, mark(z1), z2)), F(z0, mark(z1), z2), MARK(z1))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1, x2, x3)) = x3
POL(MARK(x1)) = [2]x1
POL(a) = 0
POL(active(x1)) = [1] + [2]x1
POL(b) = 0
POL(c(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c2(x1, x2, x3)) = x1 + x2 + x3
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(f(x1, x2, x3)) = x2 + [4]x3
POL(mark(x1)) = [2]x1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(a, z0, z0)) → mark(f(z0, b, b))
active(b) → mark(a)
mark(f(z0, z1, z2)) → active(f(z0, mark(z1), z2))
mark(a) → active(a)
mark(b) → active(b)
f(mark(z0), z1, z2) → f(z0, z1, z2)
f(z0, mark(z1), z2) → f(z0, z1, z2)
f(z0, z1, mark(z2)) → f(z0, z1, z2)
f(active(z0), z1, z2) → f(z0, z1, z2)
f(z0, active(z1), z2) → f(z0, z1, z2)
f(z0, z1, active(z2)) → f(z0, z1, z2)
Tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, mark(z1), z2)), F(z0, mark(z1), z2), MARK(z1))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
S tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, mark(z1), z2)), F(z0, mark(z1), z2), MARK(z1))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
K tuples:
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
Defined Rule Symbols:
active, mark, f
Defined Pair Symbols:
ACTIVE, MARK, F
Compound Symbols:
c, c2, c5, c6, c7, c8, c9, c10
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
We considered the (Usable) Rules:
mark(f(z0, z1, z2)) → active(f(z0, mark(z1), z2))
mark(a) → active(a)
mark(b) → active(b)
active(f(a, z0, z0)) → mark(f(z0, b, b))
active(b) → mark(a)
f(z0, mark(z1), z2) → f(z0, z1, z2)
f(mark(z0), z1, z2) → f(z0, z1, z2)
f(z0, z1, mark(z2)) → f(z0, z1, z2)
f(active(z0), z1, z2) → f(z0, z1, z2)
f(z0, active(z1), z2) → f(z0, z1, z2)
f(z0, z1, active(z2)) → f(z0, z1, z2)
And the Tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, mark(z1), z2)), F(z0, mark(z1), z2), MARK(z1))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1, x2, x3)) = [2]x3
POL(MARK(x1)) = x1
POL(a) = 0
POL(active(x1)) = [4]x1
POL(b) = 0
POL(c(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c2(x1, x2, x3)) = x1 + x2 + x3
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(f(x1, x2, x3)) = x2 + [2]x3
POL(mark(x1)) = [1] + [2]x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(a, z0, z0)) → mark(f(z0, b, b))
active(b) → mark(a)
mark(f(z0, z1, z2)) → active(f(z0, mark(z1), z2))
mark(a) → active(a)
mark(b) → active(b)
f(mark(z0), z1, z2) → f(z0, z1, z2)
f(z0, mark(z1), z2) → f(z0, z1, z2)
f(z0, z1, mark(z2)) → f(z0, z1, z2)
f(active(z0), z1, z2) → f(z0, z1, z2)
f(z0, active(z1), z2) → f(z0, z1, z2)
f(z0, z1, active(z2)) → f(z0, z1, z2)
Tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, mark(z1), z2)), F(z0, mark(z1), z2), MARK(z1))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
S tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, mark(z1), z2)), F(z0, mark(z1), z2), MARK(z1))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
K tuples:
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
Defined Rule Symbols:
active, mark, f
Defined Pair Symbols:
ACTIVE, MARK, F
Compound Symbols:
c, c2, c5, c6, c7, c8, c9, c10
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
MARK(
f(
z0,
z1,
z2)) →
c2(
ACTIVE(
f(
z0,
mark(
z1),
z2)),
F(
z0,
mark(
z1),
z2),
MARK(
z1)) by
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(x0, f(z0, z1, z2), x2)) → c2(ACTIVE(f(x0, active(f(z0, mark(z1), z2)), x2)), F(x0, mark(f(z0, z1, z2)), x2), MARK(f(z0, z1, z2)))
MARK(f(x0, a, x2)) → c2(ACTIVE(f(x0, active(a), x2)), F(x0, mark(a), x2), MARK(a))
MARK(f(x0, b, x2)) → c2(ACTIVE(f(x0, active(b), x2)), F(x0, mark(b), x2), MARK(b))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(a, z0, z0)) → mark(f(z0, b, b))
active(b) → mark(a)
mark(f(z0, z1, z2)) → active(f(z0, mark(z1), z2))
mark(a) → active(a)
mark(b) → active(b)
f(mark(z0), z1, z2) → f(z0, z1, z2)
f(z0, mark(z1), z2) → f(z0, z1, z2)
f(z0, z1, mark(z2)) → f(z0, z1, z2)
f(active(z0), z1, z2) → f(z0, z1, z2)
f(z0, active(z1), z2) → f(z0, z1, z2)
f(z0, z1, active(z2)) → f(z0, z1, z2)
Tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(x0, f(z0, z1, z2), x2)) → c2(ACTIVE(f(x0, active(f(z0, mark(z1), z2)), x2)), F(x0, mark(f(z0, z1, z2)), x2), MARK(f(z0, z1, z2)))
MARK(f(x0, a, x2)) → c2(ACTIVE(f(x0, active(a), x2)), F(x0, mark(a), x2), MARK(a))
MARK(f(x0, b, x2)) → c2(ACTIVE(f(x0, active(b), x2)), F(x0, mark(b), x2), MARK(b))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
S tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(x0, f(z0, z1, z2), x2)) → c2(ACTIVE(f(x0, active(f(z0, mark(z1), z2)), x2)), F(x0, mark(f(z0, z1, z2)), x2), MARK(f(z0, z1, z2)))
MARK(f(x0, a, x2)) → c2(ACTIVE(f(x0, active(a), x2)), F(x0, mark(a), x2), MARK(a))
MARK(f(x0, b, x2)) → c2(ACTIVE(f(x0, active(b), x2)), F(x0, mark(b), x2), MARK(b))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
K tuples:
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
Defined Rule Symbols:
active, mark, f
Defined Pair Symbols:
ACTIVE, F, MARK
Compound Symbols:
c, c5, c6, c7, c8, c9, c10, c2, c2
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MARK(f(x0, a, x2)) → c2(ACTIVE(f(x0, active(a), x2)), F(x0, mark(a), x2), MARK(a))
We considered the (Usable) Rules:
mark(f(z0, z1, z2)) → active(f(z0, mark(z1), z2))
mark(a) → active(a)
mark(b) → active(b)
active(f(a, z0, z0)) → mark(f(z0, b, b))
active(b) → mark(a)
f(z0, mark(z1), z2) → f(z0, z1, z2)
f(mark(z0), z1, z2) → f(z0, z1, z2)
f(z0, z1, mark(z2)) → f(z0, z1, z2)
f(active(z0), z1, z2) → f(z0, z1, z2)
f(z0, active(z1), z2) → f(z0, z1, z2)
f(z0, z1, active(z2)) → f(z0, z1, z2)
And the Tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(x0, f(z0, z1, z2), x2)) → c2(ACTIVE(f(x0, active(f(z0, mark(z1), z2)), x2)), F(x0, mark(f(z0, z1, z2)), x2), MARK(f(z0, z1, z2)))
MARK(f(x0, a, x2)) → c2(ACTIVE(f(x0, active(a), x2)), F(x0, mark(a), x2), MARK(a))
MARK(f(x0, b, x2)) → c2(ACTIVE(f(x0, active(b), x2)), F(x0, mark(b), x2), MARK(b))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1, x2, x3)) = [2]x3
POL(MARK(x1)) = [2]x1
POL(a) = [4]
POL(active(x1)) = [3] + [2]x1
POL(b) = 0
POL(c(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c2(x1)) = x1
POL(c2(x1, x2, x3)) = x1 + x2 + x3
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(f(x1, x2, x3)) = [5]x2 + x3
POL(mark(x1)) = [3] + [4]x1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(a, z0, z0)) → mark(f(z0, b, b))
active(b) → mark(a)
mark(f(z0, z1, z2)) → active(f(z0, mark(z1), z2))
mark(a) → active(a)
mark(b) → active(b)
f(mark(z0), z1, z2) → f(z0, z1, z2)
f(z0, mark(z1), z2) → f(z0, z1, z2)
f(z0, z1, mark(z2)) → f(z0, z1, z2)
f(active(z0), z1, z2) → f(z0, z1, z2)
f(z0, active(z1), z2) → f(z0, z1, z2)
f(z0, z1, active(z2)) → f(z0, z1, z2)
Tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(x0, f(z0, z1, z2), x2)) → c2(ACTIVE(f(x0, active(f(z0, mark(z1), z2)), x2)), F(x0, mark(f(z0, z1, z2)), x2), MARK(f(z0, z1, z2)))
MARK(f(x0, a, x2)) → c2(ACTIVE(f(x0, active(a), x2)), F(x0, mark(a), x2), MARK(a))
MARK(f(x0, b, x2)) → c2(ACTIVE(f(x0, active(b), x2)), F(x0, mark(b), x2), MARK(b))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
S tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(x0, f(z0, z1, z2), x2)) → c2(ACTIVE(f(x0, active(f(z0, mark(z1), z2)), x2)), F(x0, mark(f(z0, z1, z2)), x2), MARK(f(z0, z1, z2)))
MARK(f(x0, b, x2)) → c2(ACTIVE(f(x0, active(b), x2)), F(x0, mark(b), x2), MARK(b))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
K tuples:
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
MARK(f(x0, a, x2)) → c2(ACTIVE(f(x0, active(a), x2)), F(x0, mark(a), x2), MARK(a))
Defined Rule Symbols:
active, mark, f
Defined Pair Symbols:
ACTIVE, F, MARK
Compound Symbols:
c, c5, c6, c7, c8, c9, c10, c2, c2
(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MARK(f(x0, f(z0, z1, z2), x2)) → c2(ACTIVE(f(x0, active(f(z0, mark(z1), z2)), x2)), F(x0, mark(f(z0, z1, z2)), x2), MARK(f(z0, z1, z2)))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
We considered the (Usable) Rules:
mark(f(z0, z1, z2)) → active(f(z0, mark(z1), z2))
mark(a) → active(a)
mark(b) → active(b)
active(f(a, z0, z0)) → mark(f(z0, b, b))
active(b) → mark(a)
f(z0, mark(z1), z2) → f(z0, z1, z2)
f(mark(z0), z1, z2) → f(z0, z1, z2)
f(z0, z1, mark(z2)) → f(z0, z1, z2)
f(active(z0), z1, z2) → f(z0, z1, z2)
f(z0, active(z1), z2) → f(z0, z1, z2)
f(z0, z1, active(z2)) → f(z0, z1, z2)
And the Tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(x0, f(z0, z1, z2), x2)) → c2(ACTIVE(f(x0, active(f(z0, mark(z1), z2)), x2)), F(x0, mark(f(z0, z1, z2)), x2), MARK(f(z0, z1, z2)))
MARK(f(x0, a, x2)) → c2(ACTIVE(f(x0, active(a), x2)), F(x0, mark(a), x2), MARK(a))
MARK(f(x0, b, x2)) → c2(ACTIVE(f(x0, active(b), x2)), F(x0, mark(b), x2), MARK(b))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [4]
POL(F(x1, x2, x3)) = 0
POL(MARK(x1)) = [2]x1
POL(a) = 0
POL(active(x1)) = [4]x1
POL(b) = 0
POL(c(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c2(x1)) = x1
POL(c2(x1, x2, x3)) = x1 + x2 + x3
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(f(x1, x2, x3)) = [2] + [2]x2
POL(mark(x1)) = 0
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(a, z0, z0)) → mark(f(z0, b, b))
active(b) → mark(a)
mark(f(z0, z1, z2)) → active(f(z0, mark(z1), z2))
mark(a) → active(a)
mark(b) → active(b)
f(mark(z0), z1, z2) → f(z0, z1, z2)
f(z0, mark(z1), z2) → f(z0, z1, z2)
f(z0, z1, mark(z2)) → f(z0, z1, z2)
f(active(z0), z1, z2) → f(z0, z1, z2)
f(z0, active(z1), z2) → f(z0, z1, z2)
f(z0, z1, active(z2)) → f(z0, z1, z2)
Tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(x0, f(z0, z1, z2), x2)) → c2(ACTIVE(f(x0, active(f(z0, mark(z1), z2)), x2)), F(x0, mark(f(z0, z1, z2)), x2), MARK(f(z0, z1, z2)))
MARK(f(x0, a, x2)) → c2(ACTIVE(f(x0, active(a), x2)), F(x0, mark(a), x2), MARK(a))
MARK(f(x0, b, x2)) → c2(ACTIVE(f(x0, active(b), x2)), F(x0, mark(b), x2), MARK(b))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
S tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(x0, b, x2)) → c2(ACTIVE(f(x0, active(b), x2)), F(x0, mark(b), x2), MARK(b))
K tuples:
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
MARK(f(x0, a, x2)) → c2(ACTIVE(f(x0, active(a), x2)), F(x0, mark(a), x2), MARK(a))
MARK(f(x0, f(z0, z1, z2), x2)) → c2(ACTIVE(f(x0, active(f(z0, mark(z1), z2)), x2)), F(x0, mark(f(z0, z1, z2)), x2), MARK(f(z0, z1, z2)))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
Defined Rule Symbols:
active, mark, f
Defined Pair Symbols:
ACTIVE, F, MARK
Compound Symbols:
c, c5, c6, c7, c8, c9, c10, c2, c2
(15) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
MARK(
f(
x0,
f(
z0,
z1,
z2),
x2)) →
c2(
ACTIVE(
f(
x0,
active(
f(
z0,
mark(
z1),
z2)),
x2)),
F(
x0,
mark(
f(
z0,
z1,
z2)),
x2),
MARK(
f(
z0,
z1,
z2))) by
MARK(f(z0, f(x1, x2, x3), z2)) → c2(ACTIVE(f(z0, f(x1, mark(x2), x3), z2)), F(z0, mark(f(x1, x2, x3)), z2), MARK(f(x1, x2, x3)))
MARK(f(x0, f(z0, z1, z2), x4)) → c2(ACTIVE(f(x0, active(f(z0, z1, z2)), x4)), F(x0, mark(f(z0, z1, z2)), x4), MARK(f(z0, z1, z2)))
MARK(f(x0, f(x1, f(z0, z1, z2), x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(f(z0, mark(z1), z2)), x3)), x4)), F(x0, mark(f(x1, f(z0, z1, z2), x3)), x4), MARK(f(x1, f(z0, z1, z2), x3)))
MARK(f(x0, f(x1, a, x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(a), x3)), x4)), F(x0, mark(f(x1, a, x3)), x4), MARK(f(x1, a, x3)))
MARK(f(x0, f(x1, b, x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(b), x3)), x4)), F(x0, mark(f(x1, b, x3)), x4), MARK(f(x1, b, x3)))
MARK(f(x0, f(x1, x2, x3), x4)) → c2(F(x0, mark(f(x1, x2, x3)), x4))
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(a, z0, z0)) → mark(f(z0, b, b))
active(b) → mark(a)
mark(f(z0, z1, z2)) → active(f(z0, mark(z1), z2))
mark(a) → active(a)
mark(b) → active(b)
f(mark(z0), z1, z2) → f(z0, z1, z2)
f(z0, mark(z1), z2) → f(z0, z1, z2)
f(z0, z1, mark(z2)) → f(z0, z1, z2)
f(active(z0), z1, z2) → f(z0, z1, z2)
f(z0, active(z1), z2) → f(z0, z1, z2)
f(z0, z1, active(z2)) → f(z0, z1, z2)
Tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(x0, a, x2)) → c2(ACTIVE(f(x0, active(a), x2)), F(x0, mark(a), x2), MARK(a))
MARK(f(x0, b, x2)) → c2(ACTIVE(f(x0, active(b), x2)), F(x0, mark(b), x2), MARK(b))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
MARK(f(z0, f(x1, x2, x3), z2)) → c2(ACTIVE(f(z0, f(x1, mark(x2), x3), z2)), F(z0, mark(f(x1, x2, x3)), z2), MARK(f(x1, x2, x3)))
MARK(f(x0, f(z0, z1, z2), x4)) → c2(ACTIVE(f(x0, active(f(z0, z1, z2)), x4)), F(x0, mark(f(z0, z1, z2)), x4), MARK(f(z0, z1, z2)))
MARK(f(x0, f(x1, f(z0, z1, z2), x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(f(z0, mark(z1), z2)), x3)), x4)), F(x0, mark(f(x1, f(z0, z1, z2), x3)), x4), MARK(f(x1, f(z0, z1, z2), x3)))
MARK(f(x0, f(x1, a, x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(a), x3)), x4)), F(x0, mark(f(x1, a, x3)), x4), MARK(f(x1, a, x3)))
MARK(f(x0, f(x1, b, x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(b), x3)), x4)), F(x0, mark(f(x1, b, x3)), x4), MARK(f(x1, b, x3)))
MARK(f(x0, f(x1, x2, x3), x4)) → c2(F(x0, mark(f(x1, x2, x3)), x4))
S tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(x0, b, x2)) → c2(ACTIVE(f(x0, active(b), x2)), F(x0, mark(b), x2), MARK(b))
K tuples:
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
MARK(f(x0, a, x2)) → c2(ACTIVE(f(x0, active(a), x2)), F(x0, mark(a), x2), MARK(a))
MARK(f(x0, f(z0, z1, z2), x2)) → c2(ACTIVE(f(x0, active(f(z0, mark(z1), z2)), x2)), F(x0, mark(f(z0, z1, z2)), x2), MARK(f(z0, z1, z2)))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
Defined Rule Symbols:
active, mark, f
Defined Pair Symbols:
ACTIVE, F, MARK
Compound Symbols:
c, c5, c6, c7, c8, c9, c10, c2, c2
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
MARK(
f(
x0,
a,
x2)) →
c2(
ACTIVE(
f(
x0,
active(
a),
x2)),
F(
x0,
mark(
a),
x2),
MARK(
a)) by
MARK(f(z0, a, z2)) → c2(ACTIVE(f(z0, a, z2)), F(z0, mark(a), z2), MARK(a))
MARK(f(x0, a, x1)) → c2(F(x0, mark(a), x1))
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(a, z0, z0)) → mark(f(z0, b, b))
active(b) → mark(a)
mark(f(z0, z1, z2)) → active(f(z0, mark(z1), z2))
mark(a) → active(a)
mark(b) → active(b)
f(mark(z0), z1, z2) → f(z0, z1, z2)
f(z0, mark(z1), z2) → f(z0, z1, z2)
f(z0, z1, mark(z2)) → f(z0, z1, z2)
f(active(z0), z1, z2) → f(z0, z1, z2)
f(z0, active(z1), z2) → f(z0, z1, z2)
f(z0, z1, active(z2)) → f(z0, z1, z2)
Tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(x0, b, x2)) → c2(ACTIVE(f(x0, active(b), x2)), F(x0, mark(b), x2), MARK(b))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
MARK(f(z0, f(x1, x2, x3), z2)) → c2(ACTIVE(f(z0, f(x1, mark(x2), x3), z2)), F(z0, mark(f(x1, x2, x3)), z2), MARK(f(x1, x2, x3)))
MARK(f(x0, f(z0, z1, z2), x4)) → c2(ACTIVE(f(x0, active(f(z0, z1, z2)), x4)), F(x0, mark(f(z0, z1, z2)), x4), MARK(f(z0, z1, z2)))
MARK(f(x0, f(x1, f(z0, z1, z2), x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(f(z0, mark(z1), z2)), x3)), x4)), F(x0, mark(f(x1, f(z0, z1, z2), x3)), x4), MARK(f(x1, f(z0, z1, z2), x3)))
MARK(f(x0, f(x1, a, x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(a), x3)), x4)), F(x0, mark(f(x1, a, x3)), x4), MARK(f(x1, a, x3)))
MARK(f(x0, f(x1, b, x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(b), x3)), x4)), F(x0, mark(f(x1, b, x3)), x4), MARK(f(x1, b, x3)))
MARK(f(x0, f(x1, x2, x3), x4)) → c2(F(x0, mark(f(x1, x2, x3)), x4))
MARK(f(z0, a, z2)) → c2(ACTIVE(f(z0, a, z2)), F(z0, mark(a), z2), MARK(a))
MARK(f(x0, a, x1)) → c2(F(x0, mark(a), x1))
S tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(x0, b, x2)) → c2(ACTIVE(f(x0, active(b), x2)), F(x0, mark(b), x2), MARK(b))
K tuples:
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
MARK(f(x0, a, x2)) → c2(ACTIVE(f(x0, active(a), x2)), F(x0, mark(a), x2), MARK(a))
MARK(f(x0, f(z0, z1, z2), x2)) → c2(ACTIVE(f(x0, active(f(z0, mark(z1), z2)), x2)), F(x0, mark(f(z0, z1, z2)), x2), MARK(f(z0, z1, z2)))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
Defined Rule Symbols:
active, mark, f
Defined Pair Symbols:
ACTIVE, F, MARK
Compound Symbols:
c, c5, c6, c7, c8, c9, c10, c2, c2
(19) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
MARK(
f(
x0,
b,
x2)) →
c2(
ACTIVE(
f(
x0,
active(
b),
x2)),
F(
x0,
mark(
b),
x2),
MARK(
b)) by
MARK(f(z0, b, z2)) → c2(ACTIVE(f(z0, b, z2)), F(z0, mark(b), z2), MARK(b))
MARK(f(x0, b, x1)) → c2(ACTIVE(f(x0, mark(a), x1)), F(x0, mark(b), x1), MARK(b))
MARK(f(x0, b, x1)) → c2
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(a, z0, z0)) → mark(f(z0, b, b))
active(b) → mark(a)
mark(f(z0, z1, z2)) → active(f(z0, mark(z1), z2))
mark(a) → active(a)
mark(b) → active(b)
f(mark(z0), z1, z2) → f(z0, z1, z2)
f(z0, mark(z1), z2) → f(z0, z1, z2)
f(z0, z1, mark(z2)) → f(z0, z1, z2)
f(active(z0), z1, z2) → f(z0, z1, z2)
f(z0, active(z1), z2) → f(z0, z1, z2)
f(z0, z1, active(z2)) → f(z0, z1, z2)
Tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
MARK(f(z0, f(x1, x2, x3), z2)) → c2(ACTIVE(f(z0, f(x1, mark(x2), x3), z2)), F(z0, mark(f(x1, x2, x3)), z2), MARK(f(x1, x2, x3)))
MARK(f(x0, f(z0, z1, z2), x4)) → c2(ACTIVE(f(x0, active(f(z0, z1, z2)), x4)), F(x0, mark(f(z0, z1, z2)), x4), MARK(f(z0, z1, z2)))
MARK(f(x0, f(x1, f(z0, z1, z2), x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(f(z0, mark(z1), z2)), x3)), x4)), F(x0, mark(f(x1, f(z0, z1, z2), x3)), x4), MARK(f(x1, f(z0, z1, z2), x3)))
MARK(f(x0, f(x1, a, x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(a), x3)), x4)), F(x0, mark(f(x1, a, x3)), x4), MARK(f(x1, a, x3)))
MARK(f(x0, f(x1, b, x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(b), x3)), x4)), F(x0, mark(f(x1, b, x3)), x4), MARK(f(x1, b, x3)))
MARK(f(x0, f(x1, x2, x3), x4)) → c2(F(x0, mark(f(x1, x2, x3)), x4))
MARK(f(z0, a, z2)) → c2(ACTIVE(f(z0, a, z2)), F(z0, mark(a), z2), MARK(a))
MARK(f(x0, a, x1)) → c2(F(x0, mark(a), x1))
MARK(f(z0, b, z2)) → c2(ACTIVE(f(z0, b, z2)), F(z0, mark(b), z2), MARK(b))
MARK(f(x0, b, x1)) → c2(ACTIVE(f(x0, mark(a), x1)), F(x0, mark(b), x1), MARK(b))
MARK(f(x0, b, x1)) → c2
S tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(z0, b, z2)) → c2(ACTIVE(f(z0, b, z2)), F(z0, mark(b), z2), MARK(b))
MARK(f(x0, b, x1)) → c2(ACTIVE(f(x0, mark(a), x1)), F(x0, mark(b), x1), MARK(b))
MARK(f(x0, b, x1)) → c2
K tuples:
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
MARK(f(x0, a, x2)) → c2(ACTIVE(f(x0, active(a), x2)), F(x0, mark(a), x2), MARK(a))
MARK(f(x0, f(z0, z1, z2), x2)) → c2(ACTIVE(f(x0, active(f(z0, mark(z1), z2)), x2)), F(x0, mark(f(z0, z1, z2)), x2), MARK(f(z0, z1, z2)))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
Defined Rule Symbols:
active, mark, f
Defined Pair Symbols:
ACTIVE, F, MARK
Compound Symbols:
c, c5, c6, c7, c8, c9, c10, c2, c2, c2
(21) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MARK(f(x0, b, x1)) → c2
We considered the (Usable) Rules:
mark(a) → active(a)
mark(b) → active(b)
mark(f(z0, z1, z2)) → active(f(z0, mark(z1), z2))
f(z0, mark(z1), z2) → f(z0, z1, z2)
f(mark(z0), z1, z2) → f(z0, z1, z2)
f(z0, z1, mark(z2)) → f(z0, z1, z2)
f(active(z0), z1, z2) → f(z0, z1, z2)
f(z0, active(z1), z2) → f(z0, z1, z2)
f(z0, z1, active(z2)) → f(z0, z1, z2)
active(b) → mark(a)
active(f(a, z0, z0)) → mark(f(z0, b, b))
And the Tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
MARK(f(z0, f(x1, x2, x3), z2)) → c2(ACTIVE(f(z0, f(x1, mark(x2), x3), z2)), F(z0, mark(f(x1, x2, x3)), z2), MARK(f(x1, x2, x3)))
MARK(f(x0, f(z0, z1, z2), x4)) → c2(ACTIVE(f(x0, active(f(z0, z1, z2)), x4)), F(x0, mark(f(z0, z1, z2)), x4), MARK(f(z0, z1, z2)))
MARK(f(x0, f(x1, f(z0, z1, z2), x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(f(z0, mark(z1), z2)), x3)), x4)), F(x0, mark(f(x1, f(z0, z1, z2), x3)), x4), MARK(f(x1, f(z0, z1, z2), x3)))
MARK(f(x0, f(x1, a, x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(a), x3)), x4)), F(x0, mark(f(x1, a, x3)), x4), MARK(f(x1, a, x3)))
MARK(f(x0, f(x1, b, x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(b), x3)), x4)), F(x0, mark(f(x1, b, x3)), x4), MARK(f(x1, b, x3)))
MARK(f(x0, f(x1, x2, x3), x4)) → c2(F(x0, mark(f(x1, x2, x3)), x4))
MARK(f(z0, a, z2)) → c2(ACTIVE(f(z0, a, z2)), F(z0, mark(a), z2), MARK(a))
MARK(f(x0, a, x1)) → c2(F(x0, mark(a), x1))
MARK(f(z0, b, z2)) → c2(ACTIVE(f(z0, b, z2)), F(z0, mark(b), z2), MARK(b))
MARK(f(x0, b, x1)) → c2(ACTIVE(f(x0, mark(a), x1)), F(x0, mark(b), x1), MARK(b))
MARK(f(x0, b, x1)) → c2
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [4]
POL(F(x1, x2, x3)) = 0
POL(MARK(x1)) = [2]x1
POL(a) = 0
POL(active(x1)) = [3]
POL(b) = 0
POL(c(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c2) = 0
POL(c2(x1)) = x1
POL(c2(x1, x2, x3)) = x1 + x2 + x3
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(f(x1, x2, x3)) = [2] + [4]x2
POL(mark(x1)) = [2] + [2]x1
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(a, z0, z0)) → mark(f(z0, b, b))
active(b) → mark(a)
mark(f(z0, z1, z2)) → active(f(z0, mark(z1), z2))
mark(a) → active(a)
mark(b) → active(b)
f(mark(z0), z1, z2) → f(z0, z1, z2)
f(z0, mark(z1), z2) → f(z0, z1, z2)
f(z0, z1, mark(z2)) → f(z0, z1, z2)
f(active(z0), z1, z2) → f(z0, z1, z2)
f(z0, active(z1), z2) → f(z0, z1, z2)
f(z0, z1, active(z2)) → f(z0, z1, z2)
Tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
MARK(f(z0, f(x1, x2, x3), z2)) → c2(ACTIVE(f(z0, f(x1, mark(x2), x3), z2)), F(z0, mark(f(x1, x2, x3)), z2), MARK(f(x1, x2, x3)))
MARK(f(x0, f(z0, z1, z2), x4)) → c2(ACTIVE(f(x0, active(f(z0, z1, z2)), x4)), F(x0, mark(f(z0, z1, z2)), x4), MARK(f(z0, z1, z2)))
MARK(f(x0, f(x1, f(z0, z1, z2), x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(f(z0, mark(z1), z2)), x3)), x4)), F(x0, mark(f(x1, f(z0, z1, z2), x3)), x4), MARK(f(x1, f(z0, z1, z2), x3)))
MARK(f(x0, f(x1, a, x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(a), x3)), x4)), F(x0, mark(f(x1, a, x3)), x4), MARK(f(x1, a, x3)))
MARK(f(x0, f(x1, b, x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(b), x3)), x4)), F(x0, mark(f(x1, b, x3)), x4), MARK(f(x1, b, x3)))
MARK(f(x0, f(x1, x2, x3), x4)) → c2(F(x0, mark(f(x1, x2, x3)), x4))
MARK(f(z0, a, z2)) → c2(ACTIVE(f(z0, a, z2)), F(z0, mark(a), z2), MARK(a))
MARK(f(x0, a, x1)) → c2(F(x0, mark(a), x1))
MARK(f(z0, b, z2)) → c2(ACTIVE(f(z0, b, z2)), F(z0, mark(b), z2), MARK(b))
MARK(f(x0, b, x1)) → c2(ACTIVE(f(x0, mark(a), x1)), F(x0, mark(b), x1), MARK(b))
MARK(f(x0, b, x1)) → c2
S tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(mark(z0), z1, z2) → c5(F(z0, z1, z2))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(z0, b, z2)) → c2(ACTIVE(f(z0, b, z2)), F(z0, mark(b), z2), MARK(b))
MARK(f(x0, b, x1)) → c2(ACTIVE(f(x0, mark(a), x1)), F(x0, mark(b), x1), MARK(b))
K tuples:
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
MARK(f(x0, a, x2)) → c2(ACTIVE(f(x0, active(a), x2)), F(x0, mark(a), x2), MARK(a))
MARK(f(x0, f(z0, z1, z2), x2)) → c2(ACTIVE(f(x0, active(f(z0, mark(z1), z2)), x2)), F(x0, mark(f(z0, z1, z2)), x2), MARK(f(z0, z1, z2)))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
MARK(f(x0, b, x1)) → c2
Defined Rule Symbols:
active, mark, f
Defined Pair Symbols:
ACTIVE, F, MARK
Compound Symbols:
c, c5, c6, c7, c8, c9, c10, c2, c2, c2
(23) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
F(
mark(
z0),
z1,
z2) →
c5(
F(
z0,
z1,
z2)) by
F(mark(mark(y0)), z1, z2) → c5(F(mark(y0), z1, z2))
F(mark(z0), mark(y1), z2) → c5(F(z0, mark(y1), z2))
F(mark(z0), z1, mark(y2)) → c5(F(z0, z1, mark(y2)))
F(mark(active(y0)), z1, z2) → c5(F(active(y0), z1, z2))
F(mark(z0), active(y1), z2) → c5(F(z0, active(y1), z2))
F(mark(z0), z1, active(y2)) → c5(F(z0, z1, active(y2)))
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(a, z0, z0)) → mark(f(z0, b, b))
active(b) → mark(a)
mark(f(z0, z1, z2)) → active(f(z0, mark(z1), z2))
mark(a) → active(a)
mark(b) → active(b)
f(mark(z0), z1, z2) → f(z0, z1, z2)
f(z0, mark(z1), z2) → f(z0, z1, z2)
f(z0, z1, mark(z2)) → f(z0, z1, z2)
f(active(z0), z1, z2) → f(z0, z1, z2)
f(z0, active(z1), z2) → f(z0, z1, z2)
f(z0, z1, active(z2)) → f(z0, z1, z2)
Tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
MARK(f(z0, f(x1, x2, x3), z2)) → c2(ACTIVE(f(z0, f(x1, mark(x2), x3), z2)), F(z0, mark(f(x1, x2, x3)), z2), MARK(f(x1, x2, x3)))
MARK(f(x0, f(z0, z1, z2), x4)) → c2(ACTIVE(f(x0, active(f(z0, z1, z2)), x4)), F(x0, mark(f(z0, z1, z2)), x4), MARK(f(z0, z1, z2)))
MARK(f(x0, f(x1, f(z0, z1, z2), x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(f(z0, mark(z1), z2)), x3)), x4)), F(x0, mark(f(x1, f(z0, z1, z2), x3)), x4), MARK(f(x1, f(z0, z1, z2), x3)))
MARK(f(x0, f(x1, a, x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(a), x3)), x4)), F(x0, mark(f(x1, a, x3)), x4), MARK(f(x1, a, x3)))
MARK(f(x0, f(x1, b, x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(b), x3)), x4)), F(x0, mark(f(x1, b, x3)), x4), MARK(f(x1, b, x3)))
MARK(f(x0, f(x1, x2, x3), x4)) → c2(F(x0, mark(f(x1, x2, x3)), x4))
MARK(f(z0, a, z2)) → c2(ACTIVE(f(z0, a, z2)), F(z0, mark(a), z2), MARK(a))
MARK(f(x0, a, x1)) → c2(F(x0, mark(a), x1))
MARK(f(z0, b, z2)) → c2(ACTIVE(f(z0, b, z2)), F(z0, mark(b), z2), MARK(b))
MARK(f(x0, b, x1)) → c2(ACTIVE(f(x0, mark(a), x1)), F(x0, mark(b), x1), MARK(b))
MARK(f(x0, b, x1)) → c2
F(mark(mark(y0)), z1, z2) → c5(F(mark(y0), z1, z2))
F(mark(z0), mark(y1), z2) → c5(F(z0, mark(y1), z2))
F(mark(z0), z1, mark(y2)) → c5(F(z0, z1, mark(y2)))
F(mark(active(y0)), z1, z2) → c5(F(active(y0), z1, z2))
F(mark(z0), active(y1), z2) → c5(F(z0, active(y1), z2))
F(mark(z0), z1, active(y2)) → c5(F(z0, z1, active(y2)))
S tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(z0, b, z2)) → c2(ACTIVE(f(z0, b, z2)), F(z0, mark(b), z2), MARK(b))
MARK(f(x0, b, x1)) → c2(ACTIVE(f(x0, mark(a), x1)), F(x0, mark(b), x1), MARK(b))
F(mark(mark(y0)), z1, z2) → c5(F(mark(y0), z1, z2))
F(mark(z0), mark(y1), z2) → c5(F(z0, mark(y1), z2))
F(mark(z0), z1, mark(y2)) → c5(F(z0, z1, mark(y2)))
F(mark(active(y0)), z1, z2) → c5(F(active(y0), z1, z2))
F(mark(z0), active(y1), z2) → c5(F(z0, active(y1), z2))
F(mark(z0), z1, active(y2)) → c5(F(z0, z1, active(y2)))
K tuples:
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
MARK(f(x0, a, x2)) → c2(ACTIVE(f(x0, active(a), x2)), F(x0, mark(a), x2), MARK(a))
MARK(f(x0, f(z0, z1, z2), x2)) → c2(ACTIVE(f(x0, active(f(z0, mark(z1), z2)), x2)), F(x0, mark(f(z0, z1, z2)), x2), MARK(f(z0, z1, z2)))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
MARK(f(x0, b, x1)) → c2
Defined Rule Symbols:
active, mark, f
Defined Pair Symbols:
ACTIVE, F, MARK
Compound Symbols:
c, c6, c7, c8, c9, c10, c2, c2, c2, c5
(25) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
MARK(f(x0, b, x1)) → c2
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(a, z0, z0)) → mark(f(z0, b, b))
active(b) → mark(a)
mark(f(z0, z1, z2)) → active(f(z0, mark(z1), z2))
mark(a) → active(a)
mark(b) → active(b)
f(mark(z0), z1, z2) → f(z0, z1, z2)
f(z0, mark(z1), z2) → f(z0, z1, z2)
f(z0, z1, mark(z2)) → f(z0, z1, z2)
f(active(z0), z1, z2) → f(z0, z1, z2)
f(z0, active(z1), z2) → f(z0, z1, z2)
f(z0, z1, active(z2)) → f(z0, z1, z2)
Tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
MARK(f(z0, f(x1, x2, x3), z2)) → c2(ACTIVE(f(z0, f(x1, mark(x2), x3), z2)), F(z0, mark(f(x1, x2, x3)), z2), MARK(f(x1, x2, x3)))
MARK(f(x0, f(z0, z1, z2), x4)) → c2(ACTIVE(f(x0, active(f(z0, z1, z2)), x4)), F(x0, mark(f(z0, z1, z2)), x4), MARK(f(z0, z1, z2)))
MARK(f(x0, f(x1, f(z0, z1, z2), x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(f(z0, mark(z1), z2)), x3)), x4)), F(x0, mark(f(x1, f(z0, z1, z2), x3)), x4), MARK(f(x1, f(z0, z1, z2), x3)))
MARK(f(x0, f(x1, a, x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(a), x3)), x4)), F(x0, mark(f(x1, a, x3)), x4), MARK(f(x1, a, x3)))
MARK(f(x0, f(x1, b, x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(b), x3)), x4)), F(x0, mark(f(x1, b, x3)), x4), MARK(f(x1, b, x3)))
MARK(f(x0, f(x1, x2, x3), x4)) → c2(F(x0, mark(f(x1, x2, x3)), x4))
MARK(f(z0, a, z2)) → c2(ACTIVE(f(z0, a, z2)), F(z0, mark(a), z2), MARK(a))
MARK(f(x0, a, x1)) → c2(F(x0, mark(a), x1))
MARK(f(z0, b, z2)) → c2(ACTIVE(f(z0, b, z2)), F(z0, mark(b), z2), MARK(b))
MARK(f(x0, b, x1)) → c2(ACTIVE(f(x0, mark(a), x1)), F(x0, mark(b), x1), MARK(b))
F(mark(mark(y0)), z1, z2) → c5(F(mark(y0), z1, z2))
F(mark(z0), mark(y1), z2) → c5(F(z0, mark(y1), z2))
F(mark(z0), z1, mark(y2)) → c5(F(z0, z1, mark(y2)))
F(mark(active(y0)), z1, z2) → c5(F(active(y0), z1, z2))
F(mark(z0), active(y1), z2) → c5(F(z0, active(y1), z2))
F(mark(z0), z1, active(y2)) → c5(F(z0, z1, active(y2)))
S tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(z0, mark(z1), z2) → c6(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(z0, b, z2)) → c2(ACTIVE(f(z0, b, z2)), F(z0, mark(b), z2), MARK(b))
MARK(f(x0, b, x1)) → c2(ACTIVE(f(x0, mark(a), x1)), F(x0, mark(b), x1), MARK(b))
F(mark(mark(y0)), z1, z2) → c5(F(mark(y0), z1, z2))
F(mark(z0), mark(y1), z2) → c5(F(z0, mark(y1), z2))
F(mark(z0), z1, mark(y2)) → c5(F(z0, z1, mark(y2)))
F(mark(active(y0)), z1, z2) → c5(F(active(y0), z1, z2))
F(mark(z0), active(y1), z2) → c5(F(z0, active(y1), z2))
F(mark(z0), z1, active(y2)) → c5(F(z0, z1, active(y2)))
K tuples:
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
Defined Rule Symbols:
active, mark, f
Defined Pair Symbols:
ACTIVE, F, MARK
Compound Symbols:
c, c6, c7, c8, c9, c10, c2, c2, c5
(27) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
F(
z0,
mark(
z1),
z2) →
c6(
F(
z0,
z1,
z2)) by
F(z0, mark(mark(y1)), z2) → c6(F(z0, mark(y1), z2))
F(z0, mark(z1), mark(y2)) → c6(F(z0, z1, mark(y2)))
F(active(y0), mark(z1), z2) → c6(F(active(y0), z1, z2))
F(z0, mark(active(y1)), z2) → c6(F(z0, active(y1), z2))
F(z0, mark(z1), active(y2)) → c6(F(z0, z1, active(y2)))
F(mark(mark(y0)), mark(z1), z2) → c6(F(mark(mark(y0)), z1, z2))
F(mark(y0), mark(mark(y1)), z2) → c6(F(mark(y0), mark(y1), z2))
F(mark(y0), mark(z1), mark(y2)) → c6(F(mark(y0), z1, mark(y2)))
F(mark(active(y0)), mark(z1), z2) → c6(F(mark(active(y0)), z1, z2))
F(mark(y0), mark(active(y1)), z2) → c6(F(mark(y0), active(y1), z2))
F(mark(y0), mark(z1), active(y2)) → c6(F(mark(y0), z1, active(y2)))
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(a, z0, z0)) → mark(f(z0, b, b))
active(b) → mark(a)
mark(f(z0, z1, z2)) → active(f(z0, mark(z1), z2))
mark(a) → active(a)
mark(b) → active(b)
f(mark(z0), z1, z2) → f(z0, z1, z2)
f(z0, mark(z1), z2) → f(z0, z1, z2)
f(z0, z1, mark(z2)) → f(z0, z1, z2)
f(active(z0), z1, z2) → f(z0, z1, z2)
f(z0, active(z1), z2) → f(z0, z1, z2)
f(z0, z1, active(z2)) → f(z0, z1, z2)
Tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
MARK(f(z0, f(x1, x2, x3), z2)) → c2(ACTIVE(f(z0, f(x1, mark(x2), x3), z2)), F(z0, mark(f(x1, x2, x3)), z2), MARK(f(x1, x2, x3)))
MARK(f(x0, f(z0, z1, z2), x4)) → c2(ACTIVE(f(x0, active(f(z0, z1, z2)), x4)), F(x0, mark(f(z0, z1, z2)), x4), MARK(f(z0, z1, z2)))
MARK(f(x0, f(x1, f(z0, z1, z2), x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(f(z0, mark(z1), z2)), x3)), x4)), F(x0, mark(f(x1, f(z0, z1, z2), x3)), x4), MARK(f(x1, f(z0, z1, z2), x3)))
MARK(f(x0, f(x1, a, x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(a), x3)), x4)), F(x0, mark(f(x1, a, x3)), x4), MARK(f(x1, a, x3)))
MARK(f(x0, f(x1, b, x3), x4)) → c2(ACTIVE(f(x0, active(f(x1, active(b), x3)), x4)), F(x0, mark(f(x1, b, x3)), x4), MARK(f(x1, b, x3)))
MARK(f(x0, f(x1, x2, x3), x4)) → c2(F(x0, mark(f(x1, x2, x3)), x4))
MARK(f(z0, a, z2)) → c2(ACTIVE(f(z0, a, z2)), F(z0, mark(a), z2), MARK(a))
MARK(f(x0, a, x1)) → c2(F(x0, mark(a), x1))
MARK(f(z0, b, z2)) → c2(ACTIVE(f(z0, b, z2)), F(z0, mark(b), z2), MARK(b))
MARK(f(x0, b, x1)) → c2(ACTIVE(f(x0, mark(a), x1)), F(x0, mark(b), x1), MARK(b))
F(mark(mark(y0)), z1, z2) → c5(F(mark(y0), z1, z2))
F(mark(z0), mark(y1), z2) → c5(F(z0, mark(y1), z2))
F(mark(z0), z1, mark(y2)) → c5(F(z0, z1, mark(y2)))
F(mark(active(y0)), z1, z2) → c5(F(active(y0), z1, z2))
F(mark(z0), active(y1), z2) → c5(F(z0, active(y1), z2))
F(mark(z0), z1, active(y2)) → c5(F(z0, z1, active(y2)))
F(z0, mark(mark(y1)), z2) → c6(F(z0, mark(y1), z2))
F(z0, mark(z1), mark(y2)) → c6(F(z0, z1, mark(y2)))
F(active(y0), mark(z1), z2) → c6(F(active(y0), z1, z2))
F(z0, mark(active(y1)), z2) → c6(F(z0, active(y1), z2))
F(z0, mark(z1), active(y2)) → c6(F(z0, z1, active(y2)))
F(mark(mark(y0)), mark(z1), z2) → c6(F(mark(mark(y0)), z1, z2))
F(mark(y0), mark(mark(y1)), z2) → c6(F(mark(y0), mark(y1), z2))
F(mark(y0), mark(z1), mark(y2)) → c6(F(mark(y0), z1, mark(y2)))
F(mark(active(y0)), mark(z1), z2) → c6(F(mark(active(y0)), z1, z2))
F(mark(y0), mark(active(y1)), z2) → c6(F(mark(y0), active(y1), z2))
F(mark(y0), mark(z1), active(y2)) → c6(F(mark(y0), z1, active(y2)))
S tuples:
ACTIVE(f(a, z0, z0)) → c(MARK(f(z0, b, b)), F(z0, b, b))
F(active(z0), z1, z2) → c8(F(z0, z1, z2))
F(z0, active(z1), z2) → c9(F(z0, z1, z2))
MARK(f(z0, z1, z2)) → c2(ACTIVE(f(z0, z1, z2)), F(z0, mark(z1), z2), MARK(z1))
MARK(f(z0, b, z2)) → c2(ACTIVE(f(z0, b, z2)), F(z0, mark(b), z2), MARK(b))
MARK(f(x0, b, x1)) → c2(ACTIVE(f(x0, mark(a), x1)), F(x0, mark(b), x1), MARK(b))
F(mark(mark(y0)), z1, z2) → c5(F(mark(y0), z1, z2))
F(mark(z0), mark(y1), z2) → c5(F(z0, mark(y1), z2))
F(mark(z0), z1, mark(y2)) → c5(F(z0, z1, mark(y2)))
F(mark(active(y0)), z1, z2) → c5(F(active(y0), z1, z2))
F(mark(z0), active(y1), z2) → c5(F(z0, active(y1), z2))
F(mark(z0), z1, active(y2)) → c5(F(z0, z1, active(y2)))
F(z0, mark(mark(y1)), z2) → c6(F(z0, mark(y1), z2))
F(z0, mark(z1), mark(y2)) → c6(F(z0, z1, mark(y2)))
F(active(y0), mark(z1), z2) → c6(F(active(y0), z1, z2))
F(z0, mark(active(y1)), z2) → c6(F(z0, active(y1), z2))
F(z0, mark(z1), active(y2)) → c6(F(z0, z1, active(y2)))
F(mark(mark(y0)), mark(z1), z2) → c6(F(mark(mark(y0)), z1, z2))
F(mark(y0), mark(mark(y1)), z2) → c6(F(mark(y0), mark(y1), z2))
F(mark(y0), mark(z1), mark(y2)) → c6(F(mark(y0), z1, mark(y2)))
F(mark(active(y0)), mark(z1), z2) → c6(F(mark(active(y0)), z1, z2))
F(mark(y0), mark(active(y1)), z2) → c6(F(mark(y0), active(y1), z2))
F(mark(y0), mark(z1), active(y2)) → c6(F(mark(y0), z1, active(y2)))
K tuples:
F(z0, z1, active(z2)) → c10(F(z0, z1, z2))
F(z0, z1, mark(z2)) → c7(F(z0, z1, z2))
MARK(f(x0, x1, x2)) → c2(F(x0, mark(x1), x2))
Defined Rule Symbols:
active, mark, f
Defined Pair Symbols:
ACTIVE, F, MARK
Compound Symbols:
c, c7, c8, c9, c10, c2, c2, c5, c6
(29) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match(-raise)-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 3.
The compatible tree automaton used to show the Match(-raise)-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3, 11]
transitions:
active0(0) → 1
mark0(0) → 2
f0(0, 0, 0) → 3
mark1(4) → 1
active1(5) → 2
b1() → 6
active1(6) → 2
b1() → 0
b1() → 8
active0(7) → 1
active0(8) → 1
mark0(7) → 2
mark0(8) → 2
f0(7, 0, 0) → 3
f0(0, 7, 0) → 3
f0(0, 0, 7) → 3
f0(8, 0, 0) → 3
f0(0, 8, 0) → 3
f0(0, 0, 8) → 3
f0(7, 7, 0) → 3
f0(7, 0, 7) → 3
f0(7, 8, 0) → 3
f0(7, 0, 8) → 3
f0(0, 7, 7) → 3
f0(8, 7, 0) → 3
f0(0, 7, 8) → 3
f0(8, 0, 7) → 3
f0(0, 8, 7) → 3
f0(8, 8, 0) → 3
f0(8, 0, 8) → 3
f0(0, 8, 8) → 3
f0(7, 7, 7) → 3
f0(7, 7, 8) → 3
f0(7, 8, 7) → 3
f0(7, 8, 8) → 3
f0(8, 7, 7) → 3
f0(8, 7, 8) → 3
f0(8, 8, 7) → 3
f0(8, 8, 8) → 3
mark1(7) → 1
active1(7) → 2
active1(8) → 2
active1(7) → 1
active1(8) → 1
mark1(7) → 2
mark2(9) → 2
active2(10) → 1
mark1(7) → 11
active1(7) → 11
active1(8) → 11
active0(12) → 1
mark0(12) → 2
f0(12, 0, 0) → 3
f0(12, 7, 0) → 3
f0(12, 0, 7) → 3
f0(12, 8, 0) → 3
f0(12, 0, 8) → 3
f0(12, 7, 7) → 3
f0(12, 7, 8) → 3
f0(12, 8, 7) → 3
f0(12, 8, 8) → 3
f0(0, 12, 0) → 3
f0(7, 12, 0) → 3
f0(0, 12, 7) → 3
f0(8, 12, 0) → 3
f0(0, 12, 8) → 3
f0(7, 12, 7) → 3
f0(7, 12, 8) → 3
f0(8, 12, 7) → 3
f0(8, 12, 8) → 3
f0(0, 0, 12) → 3
f0(7, 0, 12) → 3
f0(0, 7, 12) → 3
f0(8, 0, 12) → 3
f0(0, 8, 12) → 3
f0(7, 7, 12) → 3
f0(7, 8, 12) → 3
f0(8, 7, 12) → 3
f0(8, 8, 12) → 3
f0(12, 12, 0) → 3
f0(12, 12, 7) → 3
f0(12, 12, 8) → 3
f0(12, 0, 12) → 3
f0(12, 7, 12) → 3
f0(12, 8, 12) → 3
f0(0, 12, 12) → 3
f0(7, 12, 12) → 3
f0(8, 12, 12) → 3
f0(12, 12, 12) → 3
mark1(12) → 11
active1(12) → 11
mark2(12) → 2
active2(12) → 1
active1(12) → 1
mark1(12) → 2
mark2(12) → 11
active2(12) → 11
a3() → 13
active3(13) → 2
a3() → 9
a3() → 4
a3() → 0
a3() → 5
a3() → 7
a3() → 10
a3() → 12
a3() → 14
active0(14) → 1
mark0(14) → 2
f0(14, 0, 0) → 3
f0(14, 7, 0) → 3
f0(14, 0, 7) → 3
f0(14, 8, 0) → 3
f0(14, 0, 8) → 3
f0(14, 7, 7) → 3
f0(14, 7, 8) → 3
f0(14, 8, 7) → 3
f0(14, 8, 8) → 3
f0(14, 12, 0) → 3
f0(14, 12, 7) → 3
f0(14, 12, 8) → 3
f0(14, 0, 12) → 3
f0(14, 7, 12) → 3
f0(14, 8, 12) → 3
f0(14, 12, 12) → 3
f0(0, 14, 0) → 3
f0(7, 14, 0) → 3
f0(0, 14, 7) → 3
f0(8, 14, 0) → 3
f0(0, 14, 8) → 3
f0(7, 14, 7) → 3
f0(7, 14, 8) → 3
f0(8, 14, 7) → 3
f0(8, 14, 8) → 3
f0(12, 14, 0) → 3
f0(12, 14, 7) → 3
f0(12, 14, 8) → 3
f0(0, 14, 12) → 3
f0(7, 14, 12) → 3
f0(8, 14, 12) → 3
f0(12, 14, 12) → 3
f0(0, 0, 14) → 3
f0(7, 0, 14) → 3
f0(0, 7, 14) → 3
f0(8, 0, 14) → 3
f0(0, 8, 14) → 3
f0(7, 7, 14) → 3
f0(7, 8, 14) → 3
f0(8, 7, 14) → 3
f0(8, 8, 14) → 3
f0(12, 0, 14) → 3
f0(12, 7, 14) → 3
f0(12, 8, 14) → 3
f0(0, 12, 14) → 3
f0(7, 12, 14) → 3
f0(8, 12, 14) → 3
f0(12, 12, 14) → 3
f0(14, 14, 0) → 3
f0(14, 14, 7) → 3
f0(14, 14, 8) → 3
f0(14, 14, 12) → 3
f0(14, 0, 14) → 3
f0(14, 7, 14) → 3
f0(14, 8, 14) → 3
f0(14, 12, 14) → 3
f0(0, 14, 14) → 3
f0(7, 14, 14) → 3
f0(8, 14, 14) → 3
f0(12, 14, 14) → 3
f0(14, 14, 14) → 3
mark1(14) → 11
active1(14) → 11
mark2(14) → 11
active2(14) → 11
active3(14) → 2
active1(14) → 1
active2(14) → 1
active3(14) → 1
mark1(14) → 2
mark2(14) → 2
active3(14) → 11
(30) BOUNDS(O(1), O(n^1))