(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

a__f(a, X, X) → a__f(X, a__b, b)
a__ba
mark(f(X1, X2, X3)) → a__f(X1, mark(X2), X3)
mark(b) → a__b
mark(a) → a
a__f(X1, X2, X3) → f(X1, X2, X3)
a__bb

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

a__f(a, z0, z0) → a__f(z0, a__b, b)
a__f(z0, z1, z2) → f(z0, z1, z2)
a__ba
a__bb
mark(f(z0, z1, z2)) → a__f(z0, mark(z1), z2)
mark(b) → a__b
mark(a) → a
Tuples:

A__F(a, z0, z0) → c(A__F(z0, a__b, b), A__B)
MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
MARK(b) → c5(A__B)
S tuples:

A__F(a, z0, z0) → c(A__F(z0, a__b, b), A__B)
MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
MARK(b) → c5(A__B)
K tuples:none
Defined Rule Symbols:

a__f, a__b, mark

Defined Pair Symbols:

A__F, MARK

Compound Symbols:

c, c4, c5

(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

MARK(b) → c5(A__B)

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

a__f(a, z0, z0) → a__f(z0, a__b, b)
a__f(z0, z1, z2) → f(z0, z1, z2)
a__ba
a__bb
mark(f(z0, z1, z2)) → a__f(z0, mark(z1), z2)
mark(b) → a__b
mark(a) → a
Tuples:

A__F(a, z0, z0) → c(A__F(z0, a__b, b), A__B)
MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
S tuples:

A__F(a, z0, z0) → c(A__F(z0, a__b, b), A__B)
MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
K tuples:none
Defined Rule Symbols:

a__f, a__b, mark

Defined Pair Symbols:

A__F, MARK

Compound Symbols:

c, c4

(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

a__f(a, z0, z0) → a__f(z0, a__b, b)
a__f(z0, z1, z2) → f(z0, z1, z2)
a__ba
a__bb
mark(f(z0, z1, z2)) → a__f(z0, mark(z1), z2)
mark(b) → a__b
mark(a) → a
Tuples:

MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
A__F(a, z0, z0) → c(A__F(z0, a__b, b))
S tuples:

MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
A__F(a, z0, z0) → c(A__F(z0, a__b, b))
K tuples:none
Defined Rule Symbols:

a__f, a__b, mark

Defined Pair Symbols:

MARK, A__F

Compound Symbols:

c4, c

(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
A__F(a, z0, z0) → c(A__F(z0, a__b, b))
We considered the (Usable) Rules:

a__ba
a__bb
mark(f(z0, z1, z2)) → a__f(z0, mark(z1), z2)
mark(b) → a__b
mark(a) → a
a__f(a, z0, z0) → a__f(z0, a__b, b)
a__f(z0, z1, z2) → f(z0, z1, z2)
And the Tuples:

MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
A__F(a, z0, z0) → c(A__F(z0, a__b, b))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(A__F(x1, x2, x3)) = x1 + x3   
POL(MARK(x1)) = [2]x1   
POL(a) = [2]   
POL(a__b) = [4]   
POL(a__f(x1, x2, x3)) = [4] + [4]x1 + x2 + [4]x3   
POL(b) = [1]   
POL(c(x1)) = x1   
POL(c4(x1, x2)) = x1 + x2   
POL(f(x1, x2, x3)) = [3] + x1 + x2 + x3   
POL(mark(x1)) = [4] + [4]x1   

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

a__f(a, z0, z0) → a__f(z0, a__b, b)
a__f(z0, z1, z2) → f(z0, z1, z2)
a__ba
a__bb
mark(f(z0, z1, z2)) → a__f(z0, mark(z1), z2)
mark(b) → a__b
mark(a) → a
Tuples:

MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
A__F(a, z0, z0) → c(A__F(z0, a__b, b))
S tuples:none
K tuples:

MARK(f(z0, z1, z2)) → c4(A__F(z0, mark(z1), z2), MARK(z1))
A__F(a, z0, z0) → c(A__F(z0, a__b, b))
Defined Rule Symbols:

a__f, a__b, mark

Defined Pair Symbols:

MARK, A__F

Compound Symbols:

c4, c

(9) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(10) BOUNDS(O(1), O(1))