We consider the following Problem: Strict Trs: { from(X) -> cons(X, n__from(s(X))) , head(cons(X, XS)) -> X , 2nd(cons(X, XS)) -> head(activate(XS)) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS))) , sel(0(), cons(X, XS)) -> X , sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { from(X) -> cons(X, n__from(s(X))) , head(cons(X, XS)) -> X , 2nd(cons(X, XS)) -> head(activate(XS)) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS))) , sel(0(), cons(X, XS)) -> X , sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {}, Uargs(cons) = {2}, Uargs(n__from) = {}, Uargs(s) = {}, Uargs(head) = {1}, Uargs(2nd) = {}, Uargs(activate) = {}, Uargs(take) = {}, Uargs(n__take) = {2}, Uargs(sel) = {2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 1] x1 + [2] [0 0] [2] cons(x1, x2) = [1 1] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] n__from(x1) = [0 0] x1 + [0] [1 1] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] head(x1) = [1 0] x1 + [0] [0 0] [1] 2nd(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 1] x1 + [0] [0 0] [0] take(x1, x2) = [0 0] x1 + [1 1] x2 + [1] [0 0] [0 0] [1] 0() = [0] [0] nil() = [0] [0] n__take(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 1] [0] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { head(cons(X, XS)) -> X , 2nd(cons(X, XS)) -> head(activate(XS)) , sel(0(), cons(X, XS)) -> X , sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X} Weak Trs: { from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {}, Uargs(cons) = {2}, Uargs(n__from) = {}, Uargs(s) = {}, Uargs(head) = {1}, Uargs(2nd) = {}, Uargs(activate) = {}, Uargs(take) = {}, Uargs(n__take) = {2}, Uargs(sel) = {2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 1] x1 + [2] [0 0] [2] cons(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] n__from(x1) = [1 1] x1 + [0] [0 0] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] head(x1) = [1 0] x1 + [1] [0 0] [1] 2nd(x1) = [1 0] x1 + [1] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] take(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] 0() = [0] [0] nil() = [0] [0] n__take(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { head(cons(X, XS)) -> X , 2nd(cons(X, XS)) -> head(activate(XS)) , sel(0(), cons(X, XS)) -> X , sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) , activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X} Weak Trs: { from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {sel(s(N), cons(X, XS)) -> sel(N, activate(XS))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {}, Uargs(cons) = {2}, Uargs(n__from) = {}, Uargs(s) = {}, Uargs(head) = {1}, Uargs(2nd) = {}, Uargs(activate) = {}, Uargs(take) = {}, Uargs(n__take) = {2}, Uargs(sel) = {2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 1] x1 + [0] [0 0] [3] cons(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [3] n__from(x1) = [1 1] x1 + [0] [0 0] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] head(x1) = [1 0] x1 + [1] [0 0] [1] 2nd(x1) = [1 0] x1 + [1] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [2] take(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 1] [1] 0() = [0] [0] nil() = [0] [0] n__take(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] sel(x1, x2) = [0 0] x1 + [1 3] x2 + [0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { head(cons(X, XS)) -> X , 2nd(cons(X, XS)) -> head(activate(XS)) , sel(0(), cons(X, XS)) -> X , activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X} Weak Trs: { sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {2nd(cons(X, XS)) -> head(activate(XS))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {}, Uargs(cons) = {2}, Uargs(n__from) = {}, Uargs(s) = {}, Uargs(head) = {1}, Uargs(2nd) = {}, Uargs(activate) = {}, Uargs(take) = {}, Uargs(n__take) = {2}, Uargs(sel) = {2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 0] x1 + [0] [0 1] [2] cons(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [2] n__from(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [0 0] x1 + [0] [0 1] [0] head(x1) = [1 0] x1 + [0] [0 0] [1] 2nd(x1) = [1 0] x1 + [3] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] take(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 1] [1] 0() = [0] [3] nil() = [0] [0] n__take(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [3] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { head(cons(X, XS)) -> X , sel(0(), cons(X, XS)) -> X , activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X} Weak Trs: { 2nd(cons(X, XS)) -> head(activate(XS)) , sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {sel(0(), cons(X, XS)) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {}, Uargs(cons) = {2}, Uargs(n__from) = {}, Uargs(s) = {}, Uargs(head) = {1}, Uargs(2nd) = {}, Uargs(activate) = {}, Uargs(take) = {}, Uargs(n__take) = {2}, Uargs(sel) = {2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 0] x1 + [0] [0 1] [2] cons(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 0] [1] n__from(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] head(x1) = [1 0] x1 + [0] [1 0] [1] 2nd(x1) = [1 0] x1 + [0] [1 0] [2] activate(x1) = [1 0] x1 + [0] [0 0] [0] take(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 1] [1] 0() = [0] [0] nil() = [0] [0] n__take(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [2] [0 0] [0 1] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { head(cons(X, XS)) -> X , activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X} Weak Trs: { sel(0(), cons(X, XS)) -> X , 2nd(cons(X, XS)) -> head(activate(XS)) , sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {head(cons(X, XS)) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {}, Uargs(cons) = {2}, Uargs(n__from) = {}, Uargs(s) = {}, Uargs(head) = {1}, Uargs(2nd) = {}, Uargs(activate) = {}, Uargs(take) = {}, Uargs(n__take) = {2}, Uargs(sel) = {2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 0] x1 + [0] [1 1] [0] cons(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 0] [0] n__from(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [0 0] x1 + [0] [0 1] [2] head(x1) = [1 0] x1 + [1] [1 1] [1] 2nd(x1) = [1 0] x1 + [1] [1 0] [2] activate(x1) = [1 0] x1 + [0] [0 0] [1] take(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] 0() = [0] [0] nil() = [0] [0] n__take(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X} Weak Trs: { head(cons(X, XS)) -> X , sel(0(), cons(X, XS)) -> X , 2nd(cons(X, XS)) -> head(activate(XS)) , sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(X) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {}, Uargs(cons) = {2}, Uargs(n__from) = {}, Uargs(s) = {}, Uargs(head) = {1}, Uargs(2nd) = {}, Uargs(activate) = {}, Uargs(take) = {}, Uargs(n__take) = {2}, Uargs(sel) = {2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 0] x1 + [2] [0 1] [0] cons(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 1] [0 1] [0] n__from(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [0 0] x1 + [1] [0 0] [0] head(x1) = [1 0] x1 + [0] [0 1] [1] 2nd(x1) = [1 0] x1 + [0] [0 1] [1] activate(x1) = [1 0] x1 + [1] [0 1] [0] take(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] 0() = [0] [0] nil() = [0] [0] n__take(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2)} Weak Trs: { activate(X) -> X , head(cons(X, XS)) -> X , sel(0(), cons(X, XS)) -> X , 2nd(cons(X, XS)) -> head(activate(XS)) , sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(n__take(X1, X2)) -> take(X1, X2)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {}, Uargs(cons) = {2}, Uargs(n__from) = {}, Uargs(s) = {}, Uargs(head) = {1}, Uargs(2nd) = {}, Uargs(activate) = {}, Uargs(take) = {}, Uargs(n__take) = {2}, Uargs(sel) = {2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 0] x1 + [0] [0 1] [2] cons(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [2] n__from(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [0 0] x1 + [0] [0 1] [3] head(x1) = [1 0] x1 + [0] [0 1] [0] 2nd(x1) = [1 0] x1 + [1] [0 1] [0] activate(x1) = [1 0] x1 + [1] [0 1] [0] take(x1, x2) = [0 3] x1 + [1 0] x2 + [0] [0 0] [0 1] [0] 0() = [0] [2] nil() = [0] [0] n__take(x1, x2) = [0 3] x1 + [1 0] x2 + [0] [0 0] [0 1] [0] sel(x1, x2) = [0 3] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {activate(n__from(X)) -> from(X)} Weak Trs: { activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , head(cons(X, XS)) -> X , sel(0(), cons(X, XS)) -> X , 2nd(cons(X, XS)) -> head(activate(XS)) , sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: {activate(n__from(X)) -> from(X)} Weak Trs: { activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , head(cons(X, XS)) -> X , sel(0(), cons(X, XS)) -> X , 2nd(cons(X, XS)) -> head(activate(XS)) , sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We have computed the following dependency pairs Strict DPs: {activate^#(n__from(X)) -> from^#(X)} Weak DPs: { activate^#(n__take(X1, X2)) -> take^#(X1, X2) , activate^#(X) -> c_3() , head^#(cons(X, XS)) -> c_4() , sel^#(0(), cons(X, XS)) -> c_5() , 2nd^#(cons(X, XS)) -> head^#(activate(XS)) , sel^#(s(N), cons(X, XS)) -> sel^#(N, activate(XS)) , from^#(X) -> c_8() , take^#(X1, X2) -> c_9() , from^#(X) -> c_10() , take^#(0(), XS) -> c_11() , take^#(s(N), cons(X, XS)) -> activate^#(XS)} We consider the following Problem: Strict DPs: {activate^#(n__from(X)) -> from^#(X)} Strict Trs: {activate(n__from(X)) -> from(X)} Weak DPs: { activate^#(n__take(X1, X2)) -> take^#(X1, X2) , activate^#(X) -> c_3() , head^#(cons(X, XS)) -> c_4() , sel^#(0(), cons(X, XS)) -> c_5() , 2nd^#(cons(X, XS)) -> head^#(activate(XS)) , sel^#(s(N), cons(X, XS)) -> sel^#(N, activate(XS)) , from^#(X) -> c_8() , take^#(X1, X2) -> c_9() , from^#(X) -> c_10() , take^#(0(), XS) -> c_11() , take^#(s(N), cons(X, XS)) -> activate^#(XS)} Weak Trs: { activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , head(cons(X, XS)) -> X , sel(0(), cons(X, XS)) -> X , 2nd(cons(X, XS)) -> head(activate(XS)) , sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We replace strict/weak-rules by the corresponding usable rules: Strict Usable Rules: {activate(n__from(X)) -> from(X)} Weak Usable Rules: { activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} We consider the following Problem: Strict DPs: {activate^#(n__from(X)) -> from^#(X)} Strict Trs: {activate(n__from(X)) -> from(X)} Weak DPs: { activate^#(n__take(X1, X2)) -> take^#(X1, X2) , activate^#(X) -> c_3() , head^#(cons(X, XS)) -> c_4() , sel^#(0(), cons(X, XS)) -> c_5() , 2nd^#(cons(X, XS)) -> head^#(activate(XS)) , sel^#(s(N), cons(X, XS)) -> sel^#(N, activate(XS)) , from^#(X) -> c_8() , take^#(X1, X2) -> c_9() , from^#(X) -> c_10() , take^#(0(), XS) -> c_11() , take^#(s(N), cons(X, XS)) -> activate^#(XS)} Weak Trs: { activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: Dependency Pairs: {activate^#(n__from(X)) -> from^#(X)} TRS Component: {activate(n__from(X)) -> from(X)} Interpretation of constant growth: ---------------------------------- The following argument positions are usable: Uargs(from) = {}, Uargs(cons) = {2}, Uargs(n__from) = {}, Uargs(s) = {}, Uargs(head) = {}, Uargs(2nd) = {}, Uargs(activate) = {}, Uargs(take) = {}, Uargs(n__take) = {2}, Uargs(sel) = {}, Uargs(activate^#) = {}, Uargs(from^#) = {}, Uargs(take^#) = {}, Uargs(head^#) = {1}, Uargs(sel^#) = {2}, Uargs(2nd^#) = {} We have the following constructor-based EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [0 0] x1 + [0] [0 0] [1] cons(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] n__from(x1) = [0 0] x1 + [0] [0 0] [0] s(x1) = [0 0] x1 + [0] [0 1] [1] head(x1) = [0 0] x1 + [0] [0 0] [0] 2nd(x1) = [0 0] x1 + [0] [0 0] [0] activate(x1) = [1 0] x1 + [1] [0 2] [1] take(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] 0() = [0] [0] nil() = [0] [0] n__take(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] sel(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] activate^#(x1) = [0 0] x1 + [1] [0 0] [1] from^#(x1) = [0 0] x1 + [0] [0 0] [0] take^#(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] c_3() = [0] [0] head^#(x1) = [1 0] x1 + [1] [0 0] [1] c_4() = [0] [0] sel^#(x1, x2) = [0 1] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] c_5() = [0] [0] 2nd^#(x1) = [1 0] x1 + [3] [0 0] [1] c_8() = [0] [0] c_9() = [0] [0] c_10() = [0] [0] c_11() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Weak DPs: { activate^#(n__from(X)) -> from^#(X) , activate^#(n__take(X1, X2)) -> take^#(X1, X2) , activate^#(X) -> c_3() , head^#(cons(X, XS)) -> c_4() , sel^#(0(), cons(X, XS)) -> c_5() , 2nd^#(cons(X, XS)) -> head^#(activate(XS)) , sel^#(s(N), cons(X, XS)) -> sel^#(N, activate(XS)) , from^#(X) -> c_8() , take^#(X1, X2) -> c_9() , from^#(X) -> c_10() , take^#(0(), XS) -> c_11() , take^#(s(N), cons(X, XS)) -> activate^#(XS)} Weak Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We use following congruence DG for path analysis ->5:{2,12} [ subsumed ] | |->9:{1} [ subsumed ] | | | |->10:{8} [ YES(O(1),O(1)) ] | | | `->11:{10} [ YES(O(1),O(1)) ] | |->8:{3} [ YES(O(1),O(1)) ] | |->6:{9} [ YES(O(1),O(1)) ] | `->7:{11} [ YES(O(1),O(1)) ] ->2:{6} [ subsumed ] | `->4:{4} [ YES(O(1),O(1)) ] ->1:{7} [ subsumed ] | `->3:{5} [ YES(O(1),O(1)) ] Here dependency-pairs are as follows: WeakDPs DPs: { 1: activate^#(n__from(X)) -> from^#(X) , 2: activate^#(n__take(X1, X2)) -> take^#(X1, X2) , 3: activate^#(X) -> c_3() , 4: head^#(cons(X, XS)) -> c_4() , 5: sel^#(0(), cons(X, XS)) -> c_5() , 6: 2nd^#(cons(X, XS)) -> head^#(activate(XS)) , 7: sel^#(s(N), cons(X, XS)) -> sel^#(N, activate(XS)) , 8: from^#(X) -> c_8() , 9: take^#(X1, X2) -> c_9() , 10: from^#(X) -> c_10() , 11: take^#(0(), XS) -> c_11() , 12: take^#(s(N), cons(X, XS)) -> activate^#(XS)} * Path 5:{2,12}: subsumed ----------------------- This path is subsumed by the proof of paths 5:{2,12}->9:{1}, 5:{2,12}->8:{3}, 5:{2,12}->7:{11}, 5:{2,12}->6:{9}. * Path 5:{2,12}->9:{1}: subsumed ------------------------------ This path is subsumed by the proof of paths 5:{2,12}->9:{1}->11:{10}, 5:{2,12}->9:{1}->10:{8}. * Path 5:{2,12}->9:{1}->10:{8}: YES(O(1),O(1)) -------------------------------------------- We consider the following Problem: Weak DPs: { activate^#(n__take(X1, X2)) -> take^#(X1, X2) , take^#(s(N), cons(X, XS)) -> activate^#(XS) , activate^#(n__from(X)) -> from^#(X)} Weak Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: activate^#(n__take(X1, X2)) -> take^#(X1, X2) -->_1 take^#(s(N), cons(X, XS)) -> activate^#(XS) :2 2: take^#(s(N), cons(X, XS)) -> activate^#(XS) -->_1 activate^#(n__from(X)) -> from^#(X) :3 -->_1 activate^#(n__take(X1, X2)) -> take^#(X1, X2) :1 3: activate^#(n__from(X)) -> from^#(X) together with the congruence-graph ->1:{1,2} Weak SCC | `->2:{3} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: { 1: activate^#(n__take(X1, X2)) -> take^#(X1, X2) , 2: take^#(s(N), cons(X, XS)) -> activate^#(XS) , 3: activate^#(n__from(X)) -> from^#(X)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 1: activate^#(n__take(X1, X2)) -> take^#(X1, X2) , 2: take^#(s(N), cons(X, XS)) -> activate^#(XS) , 3: activate^#(n__from(X)) -> from^#(X)} We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 5:{2,12}->9:{1}->11:{10}: YES(O(1),O(1)) --------------------------------------------- We consider the following Problem: Weak DPs: { activate^#(n__take(X1, X2)) -> take^#(X1, X2) , take^#(s(N), cons(X, XS)) -> activate^#(XS) , activate^#(n__from(X)) -> from^#(X)} Weak Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: activate^#(n__take(X1, X2)) -> take^#(X1, X2) -->_1 take^#(s(N), cons(X, XS)) -> activate^#(XS) :2 2: take^#(s(N), cons(X, XS)) -> activate^#(XS) -->_1 activate^#(n__from(X)) -> from^#(X) :3 -->_1 activate^#(n__take(X1, X2)) -> take^#(X1, X2) :1 3: activate^#(n__from(X)) -> from^#(X) together with the congruence-graph ->1:{1,2} Weak SCC | `->2:{3} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: { 1: activate^#(n__take(X1, X2)) -> take^#(X1, X2) , 2: take^#(s(N), cons(X, XS)) -> activate^#(XS) , 3: activate^#(n__from(X)) -> from^#(X)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 1: activate^#(n__take(X1, X2)) -> take^#(X1, X2) , 2: take^#(s(N), cons(X, XS)) -> activate^#(XS) , 3: activate^#(n__from(X)) -> from^#(X)} We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 5:{2,12}->8:{3}: YES(O(1),O(1)) ------------------------------------ We consider the following Problem: Weak DPs: { activate^#(n__take(X1, X2)) -> take^#(X1, X2) , take^#(s(N), cons(X, XS)) -> activate^#(XS)} Weak Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: activate^#(n__take(X1, X2)) -> take^#(X1, X2) -->_1 take^#(s(N), cons(X, XS)) -> activate^#(XS) :2 2: take^#(s(N), cons(X, XS)) -> activate^#(XS) -->_1 activate^#(n__take(X1, X2)) -> take^#(X1, X2) :1 together with the congruence-graph ->1:{1,2} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: { 1: activate^#(n__take(X1, X2)) -> take^#(X1, X2) , 2: take^#(s(N), cons(X, XS)) -> activate^#(XS)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 1: activate^#(n__take(X1, X2)) -> take^#(X1, X2) , 2: take^#(s(N), cons(X, XS)) -> activate^#(XS)} We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 5:{2,12}->6:{9}: YES(O(1),O(1)) ------------------------------------ We consider the following Problem: Weak DPs: { activate^#(n__take(X1, X2)) -> take^#(X1, X2) , take^#(s(N), cons(X, XS)) -> activate^#(XS)} Weak Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: activate^#(n__take(X1, X2)) -> take^#(X1, X2) -->_1 take^#(s(N), cons(X, XS)) -> activate^#(XS) :2 2: take^#(s(N), cons(X, XS)) -> activate^#(XS) -->_1 activate^#(n__take(X1, X2)) -> take^#(X1, X2) :1 together with the congruence-graph ->1:{1,2} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: { 1: activate^#(n__take(X1, X2)) -> take^#(X1, X2) , 2: take^#(s(N), cons(X, XS)) -> activate^#(XS)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 1: activate^#(n__take(X1, X2)) -> take^#(X1, X2) , 2: take^#(s(N), cons(X, XS)) -> activate^#(XS)} We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 5:{2,12}->7:{11}: YES(O(1),O(1)) ------------------------------------- We consider the following Problem: Weak DPs: { activate^#(n__take(X1, X2)) -> take^#(X1, X2) , take^#(s(N), cons(X, XS)) -> activate^#(XS)} Weak Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: activate^#(n__take(X1, X2)) -> take^#(X1, X2) -->_1 take^#(s(N), cons(X, XS)) -> activate^#(XS) :2 2: take^#(s(N), cons(X, XS)) -> activate^#(XS) -->_1 activate^#(n__take(X1, X2)) -> take^#(X1, X2) :1 together with the congruence-graph ->1:{1,2} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: { 1: activate^#(n__take(X1, X2)) -> take^#(X1, X2) , 2: take^#(s(N), cons(X, XS)) -> activate^#(XS)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 1: activate^#(n__take(X1, X2)) -> take^#(X1, X2) , 2: take^#(s(N), cons(X, XS)) -> activate^#(XS)} We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 2:{6}: subsumed -------------------- This path is subsumed by the proof of paths 2:{6}->4:{4}. * Path 2:{6}->4:{4}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Weak DPs: {2nd^#(cons(X, XS)) -> head^#(activate(XS))} Weak Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: 2nd^#(cons(X, XS)) -> head^#(activate(XS)) together with the congruence-graph ->1:{1} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: {1: 2nd^#(cons(X, XS)) -> head^#(activate(XS))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: 2nd^#(cons(X, XS)) -> head^#(activate(XS))} We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 1:{7}: subsumed -------------------- This path is subsumed by the proof of paths 1:{7}->3:{5}. * Path 1:{7}->3:{5}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Weak DPs: {sel^#(s(N), cons(X, XS)) -> sel^#(N, activate(XS))} Weak Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: sel^#(s(N), cons(X, XS)) -> sel^#(N, activate(XS)) -->_1 sel^#(s(N), cons(X, XS)) -> sel^#(N, activate(XS)) :1 together with the congruence-graph ->1:{1} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: {1: sel^#(s(N), cons(X, XS)) -> sel^#(N, activate(XS))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: sel^#(s(N), cons(X, XS)) -> sel^#(N, activate(XS))} We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(X) , activate(n__take(X1, X2)) -> take(X1, X2) , activate(X) -> X , from(X) -> n__from(X) , take(X1, X2) -> n__take(X1, X2) , from(X) -> cons(X, n__from(s(X))) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))