We consider the following Problem: Strict Trs: { from(X) -> cons(X, n__from(n__s(X))) , head(cons(X, XS)) -> X , 2nd(cons(X, XS)) -> head(activate(XS)) , take(0(), XS) -> nil() , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS))) , sel(0(), cons(X, XS)) -> X , sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) , from(X) -> n__from(X) , s(X) -> n__s(X) , take(X1, X2) -> n__take(X1, X2) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: Arguments of following rules are not normal-forms: { take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS))) , sel(s(N), cons(X, XS)) -> sel(N, activate(XS))} All above mentioned rules can be savely removed. We consider the following Problem: Strict Trs: { from(X) -> cons(X, n__from(n__s(X))) , head(cons(X, XS)) -> X , 2nd(cons(X, XS)) -> head(activate(XS)) , take(0(), XS) -> nil() , sel(0(), cons(X, XS)) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , take(X1, X2) -> n__take(X1, X2) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {}, Uargs(n__s) = {}, Uargs(head) = {1}, Uargs(2nd) = {}, Uargs(activate) = {}, Uargs(take) = {1, 2}, Uargs(s) = {1}, Uargs(n__take) = {}, Uargs(sel) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 1] x1 + [1] [0 0] [1] cons(x1, x2) = [1 1] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] n__from(x1) = [0 0] x1 + [0] [1 1] [0] n__s(x1) = [0 0] x1 + [0] [1 1] [0] head(x1) = [1 0] x1 + [0] [0 0] [1] 2nd(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 1] x1 + [0] [0 0] [0] take(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 1] [0 1] [1] 0() = [0] [0] nil() = [0] [0] s(x1) = [1 0] x1 + [1] [0 0] [1] n__take(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { from(X) -> cons(X, n__from(n__s(X))) , head(cons(X, XS)) -> X , 2nd(cons(X, XS)) -> head(activate(XS)) , sel(0(), cons(X, XS)) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X} Weak Trs: { take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {from(X) -> cons(X, n__from(n__s(X)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {}, Uargs(n__s) = {}, Uargs(head) = {1}, Uargs(2nd) = {}, Uargs(activate) = {}, Uargs(take) = {1, 2}, Uargs(s) = {1}, Uargs(n__take) = {}, Uargs(sel) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 1] x1 + [2] [0 0] [2] cons(x1, x2) = [1 1] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] n__from(x1) = [0 0] x1 + [0] [1 1] [0] n__s(x1) = [0 0] x1 + [0] [1 1] [0] head(x1) = [1 0] x1 + [0] [0 0] [1] 2nd(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 1] x1 + [0] [0 0] [0] take(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [1] 0() = [0] [0] nil() = [0] [0] s(x1) = [1 0] x1 + [0] [0 0] [0] n__take(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { head(cons(X, XS)) -> X , 2nd(cons(X, XS)) -> head(activate(XS)) , sel(0(), cons(X, XS)) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X} Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { from(X) -> n__from(X) , s(X) -> n__s(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {}, Uargs(n__s) = {}, Uargs(head) = {1}, Uargs(2nd) = {}, Uargs(activate) = {}, Uargs(take) = {1, 2}, Uargs(s) = {1}, Uargs(n__take) = {}, Uargs(sel) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 0] x1 + [1] [0 0] [1] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] n__from(x1) = [1 0] x1 + [0] [0 0] [0] n__s(x1) = [1 0] x1 + [0] [0 0] [0] head(x1) = [1 0] x1 + [1] [0 0] [1] 2nd(x1) = [1 0] x1 + [1] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] take(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] 0() = [0] [0] nil() = [0] [0] s(x1) = [1 0] x1 + [1] [0 0] [1] n__take(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { head(cons(X, XS)) -> X , 2nd(cons(X, XS)) -> head(activate(XS)) , sel(0(), cons(X, XS)) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X} Weak Trs: { from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {head(cons(X, XS)) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {}, Uargs(n__s) = {}, Uargs(head) = {1}, Uargs(2nd) = {}, Uargs(activate) = {}, Uargs(take) = {1, 2}, Uargs(s) = {1}, Uargs(n__take) = {}, Uargs(sel) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 0] x1 + [0] [0 1] [3] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 1] [0 1] [0] n__from(x1) = [1 0] x1 + [0] [0 0] [0] n__s(x1) = [1 0] x1 + [0] [0 0] [0] head(x1) = [1 0] x1 + [1] [0 1] [1] 2nd(x1) = [1 0] x1 + [1] [0 1] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] take(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] 0() = [0] [0] nil() = [0] [0] s(x1) = [1 0] x1 + [0] [0 0] [1] n__take(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { 2nd(cons(X, XS)) -> head(activate(XS)) , sel(0(), cons(X, XS)) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X} Weak Trs: { head(cons(X, XS)) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {sel(0(), cons(X, XS)) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {}, Uargs(n__s) = {}, Uargs(head) = {1}, Uargs(2nd) = {}, Uargs(activate) = {}, Uargs(take) = {1, 2}, Uargs(s) = {1}, Uargs(n__take) = {}, Uargs(sel) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 0] x1 + [0] [0 1] [0] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 1] [0 0] [0] n__from(x1) = [1 0] x1 + [0] [0 0] [0] n__s(x1) = [1 0] x1 + [1] [1 0] [0] head(x1) = [1 0] x1 + [1] [0 1] [0] 2nd(x1) = [1 0] x1 + [1] [0 0] [0] activate(x1) = [1 0] x1 + [0] [0 0] [1] take(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [1 0] [1 0] [1] 0() = [0] [0] nil() = [0] [0] s(x1) = [1 0] x1 + [1] [1 0] [1] n__take(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { 2nd(cons(X, XS)) -> head(activate(XS)) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X} Weak Trs: { sel(0(), cons(X, XS)) -> X , head(cons(X, XS)) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(X) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {}, Uargs(n__s) = {}, Uargs(head) = {1}, Uargs(2nd) = {}, Uargs(activate) = {}, Uargs(take) = {1, 2}, Uargs(s) = {1}, Uargs(n__take) = {}, Uargs(sel) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 0] x1 + [0] [0 1] [0] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 1] [0 0] [0] n__from(x1) = [1 0] x1 + [0] [0 0] [0] n__s(x1) = [1 0] x1 + [0] [0 0] [1] head(x1) = [1 0] x1 + [1] [0 1] [1] 2nd(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [1] [0 1] [3] take(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] 0() = [0] [0] nil() = [0] [0] s(x1) = [1 0] x1 + [0] [0 1] [2] n__take(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { 2nd(cons(X, XS)) -> head(activate(XS)) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))} Weak Trs: { activate(X) -> X , sel(0(), cons(X, XS)) -> X , head(cons(X, XS)) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { 2nd(cons(X, XS)) -> head(activate(XS)) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))} Weak Trs: { activate(X) -> X , sel(0(), cons(X, XS)) -> X , head(cons(X, XS)) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We have computed the following dependency pairs Strict DPs: { 2nd^#(cons(X, XS)) -> head^#(activate(XS)) , activate^#(n__from(X)) -> from^#(activate(X)) , activate^#(n__s(X)) -> s^#(activate(X)) , activate^#(n__take(X1, X2)) -> take^#(activate(X1), activate(X2))} Weak DPs: { activate^#(X) -> c_5() , sel^#(0(), cons(X, XS)) -> c_6() , head^#(cons(X, XS)) -> c_7() , from^#(X) -> c_8() , s^#(X) -> c_9() , from^#(X) -> c_10() , take^#(0(), XS) -> c_11() , take^#(X1, X2) -> c_12()} We consider the following Problem: Strict DPs: { 2nd^#(cons(X, XS)) -> head^#(activate(XS)) , activate^#(n__from(X)) -> from^#(activate(X)) , activate^#(n__s(X)) -> s^#(activate(X)) , activate^#(n__take(X1, X2)) -> take^#(activate(X1), activate(X2))} Strict Trs: { 2nd(cons(X, XS)) -> head(activate(XS)) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))} Weak DPs: { activate^#(X) -> c_5() , sel^#(0(), cons(X, XS)) -> c_6() , head^#(cons(X, XS)) -> c_7() , from^#(X) -> c_8() , s^#(X) -> c_9() , from^#(X) -> c_10() , take^#(0(), XS) -> c_11() , take^#(X1, X2) -> c_12()} Weak Trs: { activate(X) -> X , sel(0(), cons(X, XS)) -> X , head(cons(X, XS)) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We replace strict/weak-rules by the corresponding usable rules: Strict Usable Rules: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))} Weak Usable Rules: { activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} We consider the following Problem: Strict DPs: { 2nd^#(cons(X, XS)) -> head^#(activate(XS)) , activate^#(n__from(X)) -> from^#(activate(X)) , activate^#(n__s(X)) -> s^#(activate(X)) , activate^#(n__take(X1, X2)) -> take^#(activate(X1), activate(X2))} Strict Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))} Weak DPs: { activate^#(X) -> c_5() , sel^#(0(), cons(X, XS)) -> c_6() , head^#(cons(X, XS)) -> c_7() , from^#(X) -> c_8() , s^#(X) -> c_9() , from^#(X) -> c_10() , take^#(0(), XS) -> c_11() , take^#(X1, X2) -> c_12()} Weak Trs: { activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: Dependency Pairs: { activate^#(n__from(X)) -> from^#(activate(X)) , activate^#(n__s(X)) -> s^#(activate(X)) , activate^#(n__take(X1, X2)) -> take^#(activate(X1), activate(X2))} TRS Component: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))} Interpretation of constant growth: ---------------------------------- The following argument positions are usable: Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {}, Uargs(n__s) = {}, Uargs(head) = {}, Uargs(2nd) = {}, Uargs(activate) = {}, Uargs(take) = {1, 2}, Uargs(s) = {1}, Uargs(n__take) = {}, Uargs(sel) = {}, Uargs(2nd^#) = {}, Uargs(head^#) = {1}, Uargs(activate^#) = {}, Uargs(from^#) = {1}, Uargs(s^#) = {1}, Uargs(take^#) = {1, 2}, Uargs(sel^#) = {} We have the following constructor-based EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 0] x1 + [2] [0 1] [2] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [1] [0 1] [0 0] [2] n__from(x1) = [1 0] x1 + [2] [0 1] [2] n__s(x1) = [1 0] x1 + [0] [0 1] [2] head(x1) = [0 0] x1 + [0] [0 0] [0] 2nd(x1) = [0 0] x1 + [0] [0 0] [0] activate(x1) = [2 2] x1 + [0] [0 2] [1] take(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [3] 0() = [0] [0] nil() = [0] [0] s(x1) = [1 0] x1 + [1] [0 1] [2] n__take(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [2] sel(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] 2nd^#(x1) = [2 2] x1 + [0] [0 0] [0] head^#(x1) = [1 0] x1 + [0] [2 1] [0] activate^#(x1) = [2 2] x1 + [0] [0 0] [0] from^#(x1) = [1 0] x1 + [0] [0 0] [0] s^#(x1) = [1 0] x1 + [0] [0 0] [0] take^#(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [0] c_5() = [0] [0] sel^#(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] c_6() = [0] [0] c_7() = [0] [0] c_8() = [0] [0] c_9() = [0] [0] c_10() = [0] [0] c_11() = [0] [0] c_12() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict DPs: {2nd^#(cons(X, XS)) -> head^#(activate(XS))} Weak DPs: { activate^#(n__from(X)) -> from^#(activate(X)) , activate^#(n__s(X)) -> s^#(activate(X)) , activate^#(n__take(X1, X2)) -> take^#(activate(X1), activate(X2)) , activate^#(X) -> c_5() , sel^#(0(), cons(X, XS)) -> c_6() , head^#(cons(X, XS)) -> c_7() , from^#(X) -> c_8() , s^#(X) -> c_9() , from^#(X) -> c_10() , take^#(0(), XS) -> c_11() , take^#(X1, X2) -> c_12()} Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We use following congruence DG for path analysis ->11:{1} [ YES(O(1),O(1)) ] | `->12:{7} [ YES(O(1),O(1)) ] ->8:{2} [ subsumed ] | |->9:{8} [ YES(O(1),O(1)) ] | `->10:{10} [ YES(O(1),O(1)) ] ->6:{3} [ subsumed ] | `->7:{9} [ YES(O(1),O(1)) ] ->3:{4} [ subsumed ] | |->4:{11} [ YES(O(1),O(1)) ] | `->5:{12} [ YES(O(1),O(1)) ] ->2:{5} [ YES(O(1),O(1)) ] ->1:{6} [ YES(O(1),O(1)) ] Here dependency-pairs are as follows: Strict DPs: {1: 2nd^#(cons(X, XS)) -> head^#(activate(XS))} WeakDPs DPs: { 2: activate^#(n__from(X)) -> from^#(activate(X)) , 3: activate^#(n__s(X)) -> s^#(activate(X)) , 4: activate^#(n__take(X1, X2)) -> take^#(activate(X1), activate(X2)) , 5: activate^#(X) -> c_5() , 6: sel^#(0(), cons(X, XS)) -> c_6() , 7: head^#(cons(X, XS)) -> c_7() , 8: from^#(X) -> c_8() , 9: s^#(X) -> c_9() , 10: from^#(X) -> c_10() , 11: take^#(0(), XS) -> c_11() , 12: take^#(X1, X2) -> c_12()} * Path 11:{1}: YES(O(1),O(1)) --------------------------- We consider the following Problem: Strict DPs: {2nd^#(cons(X, XS)) -> head^#(activate(XS))} Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: 2nd^#(cons(X, XS)) -> head^#(activate(XS)) together with the congruence-graph ->1:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: 2nd^#(cons(X, XS)) -> head^#(activate(XS))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: 2nd^#(cons(X, XS)) -> head^#(activate(XS))} We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 11:{1}->12:{7}: YES(O(1),O(1)) ----------------------------------- We consider the following Problem: Weak DPs: {2nd^#(cons(X, XS)) -> head^#(activate(XS))} Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: 2nd^#(cons(X, XS)) -> head^#(activate(XS)) together with the congruence-graph ->1:{1} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: {1: 2nd^#(cons(X, XS)) -> head^#(activate(XS))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: 2nd^#(cons(X, XS)) -> head^#(activate(XS))} We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 8:{2}: subsumed -------------------- This path is subsumed by the proof of paths 8:{2}->10:{10}, 8:{2}->9:{8}. * Path 8:{2}->9:{8}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Weak DPs: {activate^#(n__from(X)) -> from^#(activate(X))} Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: activate^#(n__from(X)) -> from^#(activate(X)) together with the congruence-graph ->1:{1} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: {1: activate^#(n__from(X)) -> from^#(activate(X))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: activate^#(n__from(X)) -> from^#(activate(X))} We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 8:{2}->10:{10}: YES(O(1),O(1)) ----------------------------------- We consider the following Problem: Weak DPs: {activate^#(n__from(X)) -> from^#(activate(X))} Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: activate^#(n__from(X)) -> from^#(activate(X)) together with the congruence-graph ->1:{1} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: {1: activate^#(n__from(X)) -> from^#(activate(X))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: activate^#(n__from(X)) -> from^#(activate(X))} We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 6:{3}: subsumed -------------------- This path is subsumed by the proof of paths 6:{3}->7:{9}. * Path 6:{3}->7:{9}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Weak DPs: {activate^#(n__s(X)) -> s^#(activate(X))} Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: activate^#(n__s(X)) -> s^#(activate(X)) together with the congruence-graph ->1:{1} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: {1: activate^#(n__s(X)) -> s^#(activate(X))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: activate^#(n__s(X)) -> s^#(activate(X))} We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{4}: subsumed -------------------- This path is subsumed by the proof of paths 3:{4}->5:{12}, 3:{4}->4:{11}. * Path 3:{4}->4:{11}: YES(O(1),O(1)) ---------------------------------- We consider the following Problem: Weak DPs: {activate^#(n__take(X1, X2)) -> take^#(activate(X1), activate(X2))} Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: activate^#(n__take(X1, X2)) -> take^#(activate(X1), activate(X2)) together with the congruence-graph ->1:{1} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: {1: activate^#(n__take(X1, X2)) -> take^#(activate(X1), activate(X2))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: activate^#(n__take(X1, X2)) -> take^#(activate(X1), activate(X2))} We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{4}->5:{12}: YES(O(1),O(1)) ---------------------------------- We consider the following Problem: Weak DPs: {activate^#(n__take(X1, X2)) -> take^#(activate(X1), activate(X2))} Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: activate^#(n__take(X1, X2)) -> take^#(activate(X1), activate(X2)) together with the congruence-graph ->1:{1} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: {1: activate^#(n__take(X1, X2)) -> take^#(activate(X1), activate(X2))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: activate^#(n__take(X1, X2)) -> take^#(activate(X1), activate(X2))} We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 2:{5}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 1:{6}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) , activate(X) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , from(X) -> cons(X, n__from(n__s(X))) , take(0(), XS) -> nil() , take(X1, X2) -> n__take(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))