We consider the following Problem:

  Strict Trs:
    {  from(X) -> cons(X, n__from(n__s(X)))
     , head(cons(X, XS)) -> X
     , 2nd(cons(X, XS)) -> head(activate(XS))
     , take(0(), XS) -> nil()
     , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))
     , sel(0(), cons(X, XS)) -> X
     , sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
     , from(X) -> n__from(X)
     , s(X) -> n__s(X)
     , take(X1, X2) -> n__take(X1, X2)
     , activate(n__from(X)) -> from(activate(X))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
     , activate(X) -> X}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  Arguments of following rules are not normal-forms:
  {  take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))
   , sel(s(N), cons(X, XS)) -> sel(N, activate(XS))}
  
  All above mentioned rules can be savely removed.
  
  We consider the following Problem:
  
    Strict Trs:
      {  from(X) -> cons(X, n__from(n__s(X)))
       , head(cons(X, XS)) -> X
       , 2nd(cons(X, XS)) -> head(activate(XS))
       , take(0(), XS) -> nil()
       , sel(0(), cons(X, XS)) -> X
       , from(X) -> n__from(X)
       , s(X) -> n__s(X)
       , take(X1, X2) -> n__take(X1, X2)
       , activate(n__from(X)) -> from(activate(X))
       , activate(n__s(X)) -> s(activate(X))
       , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
       , activate(X) -> X}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component:
      {  take(0(), XS) -> nil()
       , take(X1, X2) -> n__take(X1, X2)}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {},
        Uargs(n__s) = {}, Uargs(head) = {1}, Uargs(2nd) = {},
        Uargs(activate) = {}, Uargs(take) = {1, 2}, Uargs(s) = {1},
        Uargs(n__take) = {}, Uargs(sel) = {}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       from(x1) = [1 1] x1 + [1]
                  [0 0]      [1]
       cons(x1, x2) = [1 1] x1 + [0 0] x2 + [1]
                      [0 0]      [0 0]      [1]
       n__from(x1) = [0 0] x1 + [0]
                     [1 1]      [0]
       n__s(x1) = [0 0] x1 + [0]
                  [1 1]      [0]
       head(x1) = [1 0] x1 + [0]
                  [0 0]      [1]
       2nd(x1) = [1 0] x1 + [0]
                 [0 0]      [1]
       activate(x1) = [1 1] x1 + [0]
                      [0 0]      [0]
       take(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                      [0 1]      [0 1]      [1]
       0() = [0]
             [0]
       nil() = [0]
               [0]
       s(x1) = [1 0] x1 + [1]
               [0 0]      [1]
       n__take(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                         [0 1]      [0 1]      [0]
       sel(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                     [0 0]      [0 0]      [1]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  from(X) -> cons(X, n__from(n__s(X)))
         , head(cons(X, XS)) -> X
         , 2nd(cons(X, XS)) -> head(activate(XS))
         , sel(0(), cons(X, XS)) -> X
         , from(X) -> n__from(X)
         , s(X) -> n__s(X)
         , activate(n__from(X)) -> from(activate(X))
         , activate(n__s(X)) -> s(activate(X))
         , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
         , activate(X) -> X}
      Weak Trs:
        {  take(0(), XS) -> nil()
         , take(X1, X2) -> n__take(X1, X2)}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component: {from(X) -> cons(X, n__from(n__s(X)))}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {},
          Uargs(n__s) = {}, Uargs(head) = {1}, Uargs(2nd) = {},
          Uargs(activate) = {}, Uargs(take) = {1, 2}, Uargs(s) = {1},
          Uargs(n__take) = {}, Uargs(sel) = {}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         from(x1) = [1 1] x1 + [2]
                    [0 0]      [2]
         cons(x1, x2) = [1 1] x1 + [0 0] x2 + [1]
                        [0 0]      [0 0]      [1]
         n__from(x1) = [0 0] x1 + [0]
                       [1 1]      [0]
         n__s(x1) = [0 0] x1 + [0]
                    [1 1]      [0]
         head(x1) = [1 0] x1 + [0]
                    [0 0]      [1]
         2nd(x1) = [1 0] x1 + [0]
                   [0 0]      [1]
         activate(x1) = [1 1] x1 + [0]
                        [0 0]      [0]
         take(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                        [0 1]      [0 1]      [1]
         0() = [0]
               [0]
         nil() = [0]
                 [0]
         s(x1) = [1 0] x1 + [0]
                 [0 0]      [0]
         n__take(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                           [0 1]      [0 1]      [0]
         sel(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                       [0 0]      [0 0]      [1]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  head(cons(X, XS)) -> X
           , 2nd(cons(X, XS)) -> head(activate(XS))
           , sel(0(), cons(X, XS)) -> X
           , from(X) -> n__from(X)
           , s(X) -> n__s(X)
           , activate(n__from(X)) -> from(activate(X))
           , activate(n__s(X)) -> s(activate(X))
           , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
           , activate(X) -> X}
        Weak Trs:
          {  from(X) -> cons(X, n__from(n__s(X)))
           , take(0(), XS) -> nil()
           , take(X1, X2) -> n__take(X1, X2)}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component:
          {  from(X) -> n__from(X)
           , s(X) -> n__s(X)}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {},
            Uargs(n__s) = {}, Uargs(head) = {1}, Uargs(2nd) = {},
            Uargs(activate) = {}, Uargs(take) = {1, 2}, Uargs(s) = {1},
            Uargs(n__take) = {}, Uargs(sel) = {}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           from(x1) = [1 0] x1 + [1]
                      [0 0]      [1]
           cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                          [0 0]      [0 0]      [1]
           n__from(x1) = [1 0] x1 + [0]
                         [0 0]      [0]
           n__s(x1) = [1 0] x1 + [0]
                      [0 0]      [0]
           head(x1) = [1 0] x1 + [1]
                      [0 0]      [1]
           2nd(x1) = [1 0] x1 + [1]
                     [0 0]      [1]
           activate(x1) = [1 0] x1 + [0]
                          [0 0]      [1]
           take(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                          [0 0]      [0 0]      [1]
           0() = [0]
                 [0]
           nil() = [0]
                   [0]
           s(x1) = [1 0] x1 + [1]
                   [0 0]      [1]
           n__take(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                             [0 0]      [0 0]      [0]
           sel(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                         [0 0]      [0 0]      [1]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  head(cons(X, XS)) -> X
             , 2nd(cons(X, XS)) -> head(activate(XS))
             , sel(0(), cons(X, XS)) -> X
             , activate(n__from(X)) -> from(activate(X))
             , activate(n__s(X)) -> s(activate(X))
             , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
             , activate(X) -> X}
          Weak Trs:
            {  from(X) -> n__from(X)
             , s(X) -> n__s(X)
             , from(X) -> cons(X, n__from(n__s(X)))
             , take(0(), XS) -> nil()
             , take(X1, X2) -> n__take(X1, X2)}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component: {head(cons(X, XS)) -> X}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            The following argument positions are usable:
              Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {},
              Uargs(n__s) = {}, Uargs(head) = {1}, Uargs(2nd) = {},
              Uargs(activate) = {}, Uargs(take) = {1, 2}, Uargs(s) = {1},
              Uargs(n__take) = {}, Uargs(sel) = {}
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             from(x1) = [1 0] x1 + [0]
                        [0 1]      [3]
             cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                            [0 1]      [0 1]      [0]
             n__from(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
             n__s(x1) = [1 0] x1 + [0]
                        [0 0]      [0]
             head(x1) = [1 0] x1 + [1]
                        [0 1]      [1]
             2nd(x1) = [1 0] x1 + [1]
                       [0 1]      [1]
             activate(x1) = [1 0] x1 + [0]
                            [0 0]      [1]
             take(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                            [0 0]      [0 0]      [0]
             0() = [0]
                   [0]
             nil() = [0]
                     [0]
             s(x1) = [1 0] x1 + [0]
                     [0 0]      [1]
             n__take(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                               [0 0]      [0 0]      [0]
             sel(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                           [0 0]      [0 1]      [1]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Strict Trs:
              {  2nd(cons(X, XS)) -> head(activate(XS))
               , sel(0(), cons(X, XS)) -> X
               , activate(n__from(X)) -> from(activate(X))
               , activate(n__s(X)) -> s(activate(X))
               , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
               , activate(X) -> X}
            Weak Trs:
              {  head(cons(X, XS)) -> X
               , from(X) -> n__from(X)
               , s(X) -> n__s(X)
               , from(X) -> cons(X, n__from(n__s(X)))
               , take(0(), XS) -> nil()
               , take(X1, X2) -> n__take(X1, X2)}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            The weightgap principle applies, where following rules are oriented strictly:
            
            TRS Component: {sel(0(), cons(X, XS)) -> X}
            
            Interpretation of nonconstant growth:
            -------------------------------------
              The following argument positions are usable:
                Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {},
                Uargs(n__s) = {}, Uargs(head) = {1}, Uargs(2nd) = {},
                Uargs(activate) = {}, Uargs(take) = {1, 2}, Uargs(s) = {1},
                Uargs(n__take) = {}, Uargs(sel) = {}
              We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
              Interpretation Functions:
               from(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
               cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                              [0 1]      [0 0]      [0]
               n__from(x1) = [1 0] x1 + [0]
                             [0 0]      [0]
               n__s(x1) = [1 0] x1 + [1]
                          [1 0]      [0]
               head(x1) = [1 0] x1 + [1]
                          [0 1]      [0]
               2nd(x1) = [1 0] x1 + [1]
                         [0 0]      [0]
               activate(x1) = [1 0] x1 + [0]
                              [0 0]      [1]
               take(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [1 0]      [1 0]      [1]
               0() = [0]
                     [0]
               nil() = [0]
                       [0]
               s(x1) = [1 0] x1 + [1]
                       [1 0]      [1]
               n__take(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
               sel(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                             [0 0]      [0 1]      [0]
            
            The strictly oriented rules are moved into the weak component.
            
            We consider the following Problem:
            
              Strict Trs:
                {  2nd(cons(X, XS)) -> head(activate(XS))
                 , activate(n__from(X)) -> from(activate(X))
                 , activate(n__s(X)) -> s(activate(X))
                 , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                 , activate(X) -> X}
              Weak Trs:
                {  sel(0(), cons(X, XS)) -> X
                 , head(cons(X, XS)) -> X
                 , from(X) -> n__from(X)
                 , s(X) -> n__s(X)
                 , from(X) -> cons(X, n__from(n__s(X)))
                 , take(0(), XS) -> nil()
                 , take(X1, X2) -> n__take(X1, X2)}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(?,O(n^1))
            
            Proof:
              The weightgap principle applies, where following rules are oriented strictly:
              
              TRS Component: {activate(X) -> X}
              
              Interpretation of nonconstant growth:
              -------------------------------------
                The following argument positions are usable:
                  Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {},
                  Uargs(n__s) = {}, Uargs(head) = {1}, Uargs(2nd) = {},
                  Uargs(activate) = {}, Uargs(take) = {1, 2}, Uargs(s) = {1},
                  Uargs(n__take) = {}, Uargs(sel) = {}
                We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                Interpretation Functions:
                 from(x1) = [1 0] x1 + [0]
                            [0 1]      [0]
                 cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                [0 1]      [0 0]      [0]
                 n__from(x1) = [1 0] x1 + [0]
                               [0 0]      [0]
                 n__s(x1) = [1 0] x1 + [0]
                            [0 0]      [1]
                 head(x1) = [1 0] x1 + [1]
                            [0 1]      [1]
                 2nd(x1) = [1 0] x1 + [0]
                           [0 0]      [1]
                 activate(x1) = [1 0] x1 + [1]
                                [0 1]      [3]
                 take(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                [0 0]      [0 0]      [1]
                 0() = [0]
                       [0]
                 nil() = [0]
                         [0]
                 s(x1) = [1 0] x1 + [0]
                         [0 1]      [2]
                 n__take(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                 sel(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                               [0 0]      [0 1]      [1]
              
              The strictly oriented rules are moved into the weak component.
              
              We consider the following Problem:
              
                Strict Trs:
                  {  2nd(cons(X, XS)) -> head(activate(XS))
                   , activate(n__from(X)) -> from(activate(X))
                   , activate(n__s(X)) -> s(activate(X))
                   , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))}
                Weak Trs:
                  {  activate(X) -> X
                   , sel(0(), cons(X, XS)) -> X
                   , head(cons(X, XS)) -> X
                   , from(X) -> n__from(X)
                   , s(X) -> n__s(X)
                   , from(X) -> cons(X, n__from(n__s(X)))
                   , take(0(), XS) -> nil()
                   , take(X1, X2) -> n__take(X1, X2)}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(?,O(n^1))
              
              Proof:
                We consider the following Problem:
                
                  Strict Trs:
                    {  2nd(cons(X, XS)) -> head(activate(XS))
                     , activate(n__from(X)) -> from(activate(X))
                     , activate(n__s(X)) -> s(activate(X))
                     , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))}
                  Weak Trs:
                    {  activate(X) -> X
                     , sel(0(), cons(X, XS)) -> X
                     , head(cons(X, XS)) -> X
                     , from(X) -> n__from(X)
                     , s(X) -> n__s(X)
                     , from(X) -> cons(X, n__from(n__s(X)))
                     , take(0(), XS) -> nil()
                     , take(X1, X2) -> n__take(X1, X2)}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(?,O(n^1))
                
                Proof:
                  We have computed the following dependency pairs
                  
                    Strict DPs:
                      {  2nd^#(cons(X, XS)) -> head^#(activate(XS))
                       , activate^#(n__from(X)) -> from^#(activate(X))
                       , activate^#(n__s(X)) -> s^#(activate(X))
                       , activate^#(n__take(X1, X2)) ->
                         take^#(activate(X1), activate(X2))}
                    Weak DPs:
                      {  activate^#(X) -> c_5()
                       , sel^#(0(), cons(X, XS)) -> c_6()
                       , head^#(cons(X, XS)) -> c_7()
                       , from^#(X) -> c_8()
                       , s^#(X) -> c_9()
                       , from^#(X) -> c_10()
                       , take^#(0(), XS) -> c_11()
                       , take^#(X1, X2) -> c_12()}
                  
                  We consider the following Problem:
                  
                    Strict DPs:
                      {  2nd^#(cons(X, XS)) -> head^#(activate(XS))
                       , activate^#(n__from(X)) -> from^#(activate(X))
                       , activate^#(n__s(X)) -> s^#(activate(X))
                       , activate^#(n__take(X1, X2)) ->
                         take^#(activate(X1), activate(X2))}
                    Strict Trs:
                      {  2nd(cons(X, XS)) -> head(activate(XS))
                       , activate(n__from(X)) -> from(activate(X))
                       , activate(n__s(X)) -> s(activate(X))
                       , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))}
                    Weak DPs:
                      {  activate^#(X) -> c_5()
                       , sel^#(0(), cons(X, XS)) -> c_6()
                       , head^#(cons(X, XS)) -> c_7()
                       , from^#(X) -> c_8()
                       , s^#(X) -> c_9()
                       , from^#(X) -> c_10()
                       , take^#(0(), XS) -> c_11()
                       , take^#(X1, X2) -> c_12()}
                    Weak Trs:
                      {  activate(X) -> X
                       , sel(0(), cons(X, XS)) -> X
                       , head(cons(X, XS)) -> X
                       , from(X) -> n__from(X)
                       , s(X) -> n__s(X)
                       , from(X) -> cons(X, n__from(n__s(X)))
                       , take(0(), XS) -> nil()
                       , take(X1, X2) -> n__take(X1, X2)}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(?,O(n^1))
                  
                  Proof:
                    We replace strict/weak-rules by the corresponding usable rules:
                    
                      Strict Usable Rules:
                        {  activate(n__from(X)) -> from(activate(X))
                         , activate(n__s(X)) -> s(activate(X))
                         , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))}
                      Weak Usable Rules:
                        {  activate(X) -> X
                         , from(X) -> n__from(X)
                         , s(X) -> n__s(X)
                         , from(X) -> cons(X, n__from(n__s(X)))
                         , take(0(), XS) -> nil()
                         , take(X1, X2) -> n__take(X1, X2)}
                    
                    We consider the following Problem:
                    
                      Strict DPs:
                        {  2nd^#(cons(X, XS)) -> head^#(activate(XS))
                         , activate^#(n__from(X)) -> from^#(activate(X))
                         , activate^#(n__s(X)) -> s^#(activate(X))
                         , activate^#(n__take(X1, X2)) ->
                           take^#(activate(X1), activate(X2))}
                      Strict Trs:
                        {  activate(n__from(X)) -> from(activate(X))
                         , activate(n__s(X)) -> s(activate(X))
                         , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))}
                      Weak DPs:
                        {  activate^#(X) -> c_5()
                         , sel^#(0(), cons(X, XS)) -> c_6()
                         , head^#(cons(X, XS)) -> c_7()
                         , from^#(X) -> c_8()
                         , s^#(X) -> c_9()
                         , from^#(X) -> c_10()
                         , take^#(0(), XS) -> c_11()
                         , take^#(X1, X2) -> c_12()}
                      Weak Trs:
                        {  activate(X) -> X
                         , from(X) -> n__from(X)
                         , s(X) -> n__s(X)
                         , from(X) -> cons(X, n__from(n__s(X)))
                         , take(0(), XS) -> nil()
                         , take(X1, X2) -> n__take(X1, X2)}
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(?,O(n^1))
                    
                    Proof:
                      The weightgap principle applies, where following rules are oriented strictly:
                      
                      Dependency Pairs:
                        {  activate^#(n__from(X)) -> from^#(activate(X))
                         , activate^#(n__s(X)) -> s^#(activate(X))
                         , activate^#(n__take(X1, X2)) ->
                           take^#(activate(X1), activate(X2))}
                      TRS Component:
                        {  activate(n__from(X)) -> from(activate(X))
                         , activate(n__s(X)) -> s(activate(X))
                         , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))}
                      
                      Interpretation of constant growth:
                      ----------------------------------
                        The following argument positions are usable:
                          Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {},
                          Uargs(n__s) = {}, Uargs(head) = {}, Uargs(2nd) = {},
                          Uargs(activate) = {}, Uargs(take) = {1, 2}, Uargs(s) = {1},
                          Uargs(n__take) = {}, Uargs(sel) = {}, Uargs(2nd^#) = {},
                          Uargs(head^#) = {1}, Uargs(activate^#) = {}, Uargs(from^#) = {1},
                          Uargs(s^#) = {1}, Uargs(take^#) = {1, 2}, Uargs(sel^#) = {}
                        We have the following constructor-based EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                        Interpretation Functions:
                         from(x1) = [1 0] x1 + [2]
                                    [0 1]      [2]
                         cons(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                                        [0 1]      [0 0]      [2]
                         n__from(x1) = [1 0] x1 + [2]
                                       [0 1]      [2]
                         n__s(x1) = [1 0] x1 + [0]
                                    [0 1]      [2]
                         head(x1) = [0 0] x1 + [0]
                                    [0 0]      [0]
                         2nd(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                         activate(x1) = [2 2] x1 + [0]
                                        [0 2]      [1]
                         take(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                        [0 1]      [0 1]      [3]
                         0() = [0]
                               [0]
                         nil() = [0]
                                 [0]
                         s(x1) = [1 0] x1 + [1]
                                 [0 1]      [2]
                         n__take(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                           [0 1]      [0 1]      [2]
                         sel(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                       [0 0]      [0 0]      [0]
                         2nd^#(x1) = [2 2] x1 + [0]
                                     [0 0]      [0]
                         head^#(x1) = [1 0] x1 + [0]
                                      [2 1]      [0]
                         activate^#(x1) = [2 2] x1 + [0]
                                          [0 0]      [0]
                         from^#(x1) = [1 0] x1 + [0]
                                      [0 0]      [0]
                         s^#(x1) = [1 0] x1 + [0]
                                   [0 0]      [0]
                         take^#(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                          [0 0]      [0 0]      [0]
                         c_5() = [0]
                                 [0]
                         sel^#(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                                         [0 0]      [0 0]      [1]
                         c_6() = [0]
                                 [0]
                         c_7() = [0]
                                 [0]
                         c_8() = [0]
                                 [0]
                         c_9() = [0]
                                 [0]
                         c_10() = [0]
                                  [0]
                         c_11() = [0]
                                  [0]
                         c_12() = [0]
                                  [0]
                      
                      The strictly oriented rules are moved into the weak component.
                      
                      We consider the following Problem:
                      
                        Strict DPs: {2nd^#(cons(X, XS)) -> head^#(activate(XS))}
                        Weak DPs:
                          {  activate^#(n__from(X)) -> from^#(activate(X))
                           , activate^#(n__s(X)) -> s^#(activate(X))
                           , activate^#(n__take(X1, X2)) -> take^#(activate(X1), activate(X2))
                           , activate^#(X) -> c_5()
                           , sel^#(0(), cons(X, XS)) -> c_6()
                           , head^#(cons(X, XS)) -> c_7()
                           , from^#(X) -> c_8()
                           , s^#(X) -> c_9()
                           , from^#(X) -> c_10()
                           , take^#(0(), XS) -> c_11()
                           , take^#(X1, X2) -> c_12()}
                        Weak Trs:
                          {  activate(n__from(X)) -> from(activate(X))
                           , activate(n__s(X)) -> s(activate(X))
                           , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                           , activate(X) -> X
                           , from(X) -> n__from(X)
                           , s(X) -> n__s(X)
                           , from(X) -> cons(X, n__from(n__s(X)))
                           , take(0(), XS) -> nil()
                           , take(X1, X2) -> n__take(X1, X2)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(?,O(n^1))
                      
                      Proof:
                        We use following congruence DG for path analysis
                        
                        ->11:{1}                                                    [   YES(O(1),O(1))   ]
                           |
                           `->12:{7}                                                [   YES(O(1),O(1))   ]
                        
                        ->8:{2}                                                     [      subsumed      ]
                           |
                           |->9:{8}                                                 [   YES(O(1),O(1))   ]
                           |
                           `->10:{10}                                               [   YES(O(1),O(1))   ]
                        
                        ->6:{3}                                                     [      subsumed      ]
                           |
                           `->7:{9}                                                 [   YES(O(1),O(1))   ]
                        
                        ->3:{4}                                                     [      subsumed      ]
                           |
                           |->4:{11}                                                [   YES(O(1),O(1))   ]
                           |
                           `->5:{12}                                                [   YES(O(1),O(1))   ]
                        
                        ->2:{5}                                                     [   YES(O(1),O(1))   ]
                        
                        ->1:{6}                                                     [   YES(O(1),O(1))   ]
                        
                        
                        Here dependency-pairs are as follows:
                        
                        Strict DPs:
                          {1: 2nd^#(cons(X, XS)) -> head^#(activate(XS))}
                        WeakDPs DPs:
                          {  2: activate^#(n__from(X)) -> from^#(activate(X))
                           , 3: activate^#(n__s(X)) -> s^#(activate(X))
                           , 4: activate^#(n__take(X1, X2)) ->
                                take^#(activate(X1), activate(X2))
                           , 5: activate^#(X) -> c_5()
                           , 6: sel^#(0(), cons(X, XS)) -> c_6()
                           , 7: head^#(cons(X, XS)) -> c_7()
                           , 8: from^#(X) -> c_8()
                           , 9: s^#(X) -> c_9()
                           , 10: from^#(X) -> c_10()
                           , 11: take^#(0(), XS) -> c_11()
                           , 12: take^#(X1, X2) -> c_12()}
                        
                        * Path 11:{1}: YES(O(1),O(1))
                          ---------------------------
                          
                          We consider the following Problem:
                          
                            Strict DPs: {2nd^#(cons(X, XS)) -> head^#(activate(XS))}
                            Weak Trs:
                              {  activate(n__from(X)) -> from(activate(X))
                               , activate(n__s(X)) -> s(activate(X))
                               , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                               , activate(X) -> X
                               , from(X) -> n__from(X)
                               , s(X) -> n__s(X)
                               , from(X) -> cons(X, n__from(n__s(X)))
                               , take(0(), XS) -> nil()
                               , take(X1, X2) -> n__take(X1, X2)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            We consider the the dependency-graph
                            
                              1: 2nd^#(cons(X, XS)) -> head^#(activate(XS))
                              
                            
                            together with the congruence-graph
                            
                              ->1:{1}                                                     Noncyclic, trivial, SCC
                              
                              
                              Here dependency-pairs are as follows:
                              
                              Strict DPs:
                                {1: 2nd^#(cons(X, XS)) -> head^#(activate(XS))}
                            
                            The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                            
                              {1: 2nd^#(cons(X, XS)) -> head^#(activate(XS))}
                            
                            We consider the following Problem:
                            
                              Weak Trs:
                                {  activate(n__from(X)) -> from(activate(X))
                                 , activate(n__s(X)) -> s(activate(X))
                                 , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                                 , activate(X) -> X
                                 , from(X) -> n__from(X)
                                 , s(X) -> n__s(X)
                                 , from(X) -> cons(X, n__from(n__s(X)))
                                 , take(0(), XS) -> nil()
                                 , take(X1, X2) -> n__take(X1, X2)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              We consider the following Problem:
                              
                                Weak Trs:
                                  {  activate(n__from(X)) -> from(activate(X))
                                   , activate(n__s(X)) -> s(activate(X))
                                   , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                                   , activate(X) -> X
                                   , from(X) -> n__from(X)
                                   , s(X) -> n__s(X)
                                   , from(X) -> cons(X, n__from(n__s(X)))
                                   , take(0(), XS) -> nil()
                                   , take(X1, X2) -> n__take(X1, X2)}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(O(1),O(1))
                              
                              Proof:
                                No rule is usable.
                                
                                We consider the following Problem:
                                
                                  StartTerms: basic terms
                                  Strategy: innermost
                                
                                Certificate: YES(O(1),O(1))
                                
                                Proof:
                                  Empty rules are trivially bounded
                        
                        * Path 11:{1}->12:{7}: YES(O(1),O(1))
                          -----------------------------------
                          
                          We consider the following Problem:
                          
                            Weak DPs: {2nd^#(cons(X, XS)) -> head^#(activate(XS))}
                            Weak Trs:
                              {  activate(n__from(X)) -> from(activate(X))
                               , activate(n__s(X)) -> s(activate(X))
                               , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                               , activate(X) -> X
                               , from(X) -> n__from(X)
                               , s(X) -> n__s(X)
                               , from(X) -> cons(X, n__from(n__s(X)))
                               , take(0(), XS) -> nil()
                               , take(X1, X2) -> n__take(X1, X2)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            We consider the the dependency-graph
                            
                              1: 2nd^#(cons(X, XS)) -> head^#(activate(XS))
                              
                            
                            together with the congruence-graph
                            
                              ->1:{1}                                                     Weak SCC
                              
                              
                              Here dependency-pairs are as follows:
                              
                              WeakDPs DPs:
                                {1: 2nd^#(cons(X, XS)) -> head^#(activate(XS))}
                            
                            The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                            
                              {1: 2nd^#(cons(X, XS)) -> head^#(activate(XS))}
                            
                            We consider the following Problem:
                            
                              Weak Trs:
                                {  activate(n__from(X)) -> from(activate(X))
                                 , activate(n__s(X)) -> s(activate(X))
                                 , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                                 , activate(X) -> X
                                 , from(X) -> n__from(X)
                                 , s(X) -> n__s(X)
                                 , from(X) -> cons(X, n__from(n__s(X)))
                                 , take(0(), XS) -> nil()
                                 , take(X1, X2) -> n__take(X1, X2)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              We consider the following Problem:
                              
                                Weak Trs:
                                  {  activate(n__from(X)) -> from(activate(X))
                                   , activate(n__s(X)) -> s(activate(X))
                                   , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                                   , activate(X) -> X
                                   , from(X) -> n__from(X)
                                   , s(X) -> n__s(X)
                                   , from(X) -> cons(X, n__from(n__s(X)))
                                   , take(0(), XS) -> nil()
                                   , take(X1, X2) -> n__take(X1, X2)}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(O(1),O(1))
                              
                              Proof:
                                No rule is usable.
                                
                                We consider the following Problem:
                                
                                  StartTerms: basic terms
                                  Strategy: innermost
                                
                                Certificate: YES(O(1),O(1))
                                
                                Proof:
                                  Empty rules are trivially bounded
                        
                        * Path 8:{2}: subsumed
                          --------------------
                          
                          This path is subsumed by the proof of paths 8:{2}->10:{10},
                                                                      8:{2}->9:{8}.
                        
                        * Path 8:{2}->9:{8}: YES(O(1),O(1))
                          ---------------------------------
                          
                          We consider the following Problem:
                          
                            Weak DPs: {activate^#(n__from(X)) -> from^#(activate(X))}
                            Weak Trs:
                              {  activate(n__from(X)) -> from(activate(X))
                               , activate(n__s(X)) -> s(activate(X))
                               , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                               , activate(X) -> X
                               , from(X) -> n__from(X)
                               , s(X) -> n__s(X)
                               , from(X) -> cons(X, n__from(n__s(X)))
                               , take(0(), XS) -> nil()
                               , take(X1, X2) -> n__take(X1, X2)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            We consider the the dependency-graph
                            
                              1: activate^#(n__from(X)) -> from^#(activate(X))
                              
                            
                            together with the congruence-graph
                            
                              ->1:{1}                                                     Weak SCC
                              
                              
                              Here dependency-pairs are as follows:
                              
                              WeakDPs DPs:
                                {1: activate^#(n__from(X)) -> from^#(activate(X))}
                            
                            The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                            
                              {1: activate^#(n__from(X)) -> from^#(activate(X))}
                            
                            We consider the following Problem:
                            
                              Weak Trs:
                                {  activate(n__from(X)) -> from(activate(X))
                                 , activate(n__s(X)) -> s(activate(X))
                                 , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                                 , activate(X) -> X
                                 , from(X) -> n__from(X)
                                 , s(X) -> n__s(X)
                                 , from(X) -> cons(X, n__from(n__s(X)))
                                 , take(0(), XS) -> nil()
                                 , take(X1, X2) -> n__take(X1, X2)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              We consider the following Problem:
                              
                                Weak Trs:
                                  {  activate(n__from(X)) -> from(activate(X))
                                   , activate(n__s(X)) -> s(activate(X))
                                   , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                                   , activate(X) -> X
                                   , from(X) -> n__from(X)
                                   , s(X) -> n__s(X)
                                   , from(X) -> cons(X, n__from(n__s(X)))
                                   , take(0(), XS) -> nil()
                                   , take(X1, X2) -> n__take(X1, X2)}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(O(1),O(1))
                              
                              Proof:
                                No rule is usable.
                                
                                We consider the following Problem:
                                
                                  StartTerms: basic terms
                                  Strategy: innermost
                                
                                Certificate: YES(O(1),O(1))
                                
                                Proof:
                                  Empty rules are trivially bounded
                        
                        * Path 8:{2}->10:{10}: YES(O(1),O(1))
                          -----------------------------------
                          
                          We consider the following Problem:
                          
                            Weak DPs: {activate^#(n__from(X)) -> from^#(activate(X))}
                            Weak Trs:
                              {  activate(n__from(X)) -> from(activate(X))
                               , activate(n__s(X)) -> s(activate(X))
                               , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                               , activate(X) -> X
                               , from(X) -> n__from(X)
                               , s(X) -> n__s(X)
                               , from(X) -> cons(X, n__from(n__s(X)))
                               , take(0(), XS) -> nil()
                               , take(X1, X2) -> n__take(X1, X2)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            We consider the the dependency-graph
                            
                              1: activate^#(n__from(X)) -> from^#(activate(X))
                              
                            
                            together with the congruence-graph
                            
                              ->1:{1}                                                     Weak SCC
                              
                              
                              Here dependency-pairs are as follows:
                              
                              WeakDPs DPs:
                                {1: activate^#(n__from(X)) -> from^#(activate(X))}
                            
                            The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                            
                              {1: activate^#(n__from(X)) -> from^#(activate(X))}
                            
                            We consider the following Problem:
                            
                              Weak Trs:
                                {  activate(n__from(X)) -> from(activate(X))
                                 , activate(n__s(X)) -> s(activate(X))
                                 , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                                 , activate(X) -> X
                                 , from(X) -> n__from(X)
                                 , s(X) -> n__s(X)
                                 , from(X) -> cons(X, n__from(n__s(X)))
                                 , take(0(), XS) -> nil()
                                 , take(X1, X2) -> n__take(X1, X2)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              We consider the following Problem:
                              
                                Weak Trs:
                                  {  activate(n__from(X)) -> from(activate(X))
                                   , activate(n__s(X)) -> s(activate(X))
                                   , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                                   , activate(X) -> X
                                   , from(X) -> n__from(X)
                                   , s(X) -> n__s(X)
                                   , from(X) -> cons(X, n__from(n__s(X)))
                                   , take(0(), XS) -> nil()
                                   , take(X1, X2) -> n__take(X1, X2)}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(O(1),O(1))
                              
                              Proof:
                                No rule is usable.
                                
                                We consider the following Problem:
                                
                                  StartTerms: basic terms
                                  Strategy: innermost
                                
                                Certificate: YES(O(1),O(1))
                                
                                Proof:
                                  Empty rules are trivially bounded
                        
                        * Path 6:{3}: subsumed
                          --------------------
                          
                          This path is subsumed by the proof of paths 6:{3}->7:{9}.
                        
                        * Path 6:{3}->7:{9}: YES(O(1),O(1))
                          ---------------------------------
                          
                          We consider the following Problem:
                          
                            Weak DPs: {activate^#(n__s(X)) -> s^#(activate(X))}
                            Weak Trs:
                              {  activate(n__from(X)) -> from(activate(X))
                               , activate(n__s(X)) -> s(activate(X))
                               , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                               , activate(X) -> X
                               , from(X) -> n__from(X)
                               , s(X) -> n__s(X)
                               , from(X) -> cons(X, n__from(n__s(X)))
                               , take(0(), XS) -> nil()
                               , take(X1, X2) -> n__take(X1, X2)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            We consider the the dependency-graph
                            
                              1: activate^#(n__s(X)) -> s^#(activate(X))
                              
                            
                            together with the congruence-graph
                            
                              ->1:{1}                                                     Weak SCC
                              
                              
                              Here dependency-pairs are as follows:
                              
                              WeakDPs DPs:
                                {1: activate^#(n__s(X)) -> s^#(activate(X))}
                            
                            The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                            
                              {1: activate^#(n__s(X)) -> s^#(activate(X))}
                            
                            We consider the following Problem:
                            
                              Weak Trs:
                                {  activate(n__from(X)) -> from(activate(X))
                                 , activate(n__s(X)) -> s(activate(X))
                                 , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                                 , activate(X) -> X
                                 , from(X) -> n__from(X)
                                 , s(X) -> n__s(X)
                                 , from(X) -> cons(X, n__from(n__s(X)))
                                 , take(0(), XS) -> nil()
                                 , take(X1, X2) -> n__take(X1, X2)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              We consider the following Problem:
                              
                                Weak Trs:
                                  {  activate(n__from(X)) -> from(activate(X))
                                   , activate(n__s(X)) -> s(activate(X))
                                   , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                                   , activate(X) -> X
                                   , from(X) -> n__from(X)
                                   , s(X) -> n__s(X)
                                   , from(X) -> cons(X, n__from(n__s(X)))
                                   , take(0(), XS) -> nil()
                                   , take(X1, X2) -> n__take(X1, X2)}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(O(1),O(1))
                              
                              Proof:
                                No rule is usable.
                                
                                We consider the following Problem:
                                
                                  StartTerms: basic terms
                                  Strategy: innermost
                                
                                Certificate: YES(O(1),O(1))
                                
                                Proof:
                                  Empty rules are trivially bounded
                        
                        * Path 3:{4}: subsumed
                          --------------------
                          
                          This path is subsumed by the proof of paths 3:{4}->5:{12},
                                                                      3:{4}->4:{11}.
                        
                        * Path 3:{4}->4:{11}: YES(O(1),O(1))
                          ----------------------------------
                          
                          We consider the following Problem:
                          
                            Weak DPs:
                              {activate^#(n__take(X1, X2)) -> take^#(activate(X1), activate(X2))}
                            Weak Trs:
                              {  activate(n__from(X)) -> from(activate(X))
                               , activate(n__s(X)) -> s(activate(X))
                               , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                               , activate(X) -> X
                               , from(X) -> n__from(X)
                               , s(X) -> n__s(X)
                               , from(X) -> cons(X, n__from(n__s(X)))
                               , take(0(), XS) -> nil()
                               , take(X1, X2) -> n__take(X1, X2)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            We consider the the dependency-graph
                            
                              1: activate^#(n__take(X1, X2)) ->
                                 take^#(activate(X1), activate(X2))
                              
                            
                            together with the congruence-graph
                            
                              ->1:{1}                                                     Weak SCC
                              
                              
                              Here dependency-pairs are as follows:
                              
                              WeakDPs DPs:
                                {1: activate^#(n__take(X1, X2)) ->
                                    take^#(activate(X1), activate(X2))}
                            
                            The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                            
                              {1: activate^#(n__take(X1, X2)) ->
                                  take^#(activate(X1), activate(X2))}
                            
                            We consider the following Problem:
                            
                              Weak Trs:
                                {  activate(n__from(X)) -> from(activate(X))
                                 , activate(n__s(X)) -> s(activate(X))
                                 , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                                 , activate(X) -> X
                                 , from(X) -> n__from(X)
                                 , s(X) -> n__s(X)
                                 , from(X) -> cons(X, n__from(n__s(X)))
                                 , take(0(), XS) -> nil()
                                 , take(X1, X2) -> n__take(X1, X2)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              We consider the following Problem:
                              
                                Weak Trs:
                                  {  activate(n__from(X)) -> from(activate(X))
                                   , activate(n__s(X)) -> s(activate(X))
                                   , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                                   , activate(X) -> X
                                   , from(X) -> n__from(X)
                                   , s(X) -> n__s(X)
                                   , from(X) -> cons(X, n__from(n__s(X)))
                                   , take(0(), XS) -> nil()
                                   , take(X1, X2) -> n__take(X1, X2)}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(O(1),O(1))
                              
                              Proof:
                                No rule is usable.
                                
                                We consider the following Problem:
                                
                                  StartTerms: basic terms
                                  Strategy: innermost
                                
                                Certificate: YES(O(1),O(1))
                                
                                Proof:
                                  Empty rules are trivially bounded
                        
                        * Path 3:{4}->5:{12}: YES(O(1),O(1))
                          ----------------------------------
                          
                          We consider the following Problem:
                          
                            Weak DPs:
                              {activate^#(n__take(X1, X2)) -> take^#(activate(X1), activate(X2))}
                            Weak Trs:
                              {  activate(n__from(X)) -> from(activate(X))
                               , activate(n__s(X)) -> s(activate(X))
                               , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                               , activate(X) -> X
                               , from(X) -> n__from(X)
                               , s(X) -> n__s(X)
                               , from(X) -> cons(X, n__from(n__s(X)))
                               , take(0(), XS) -> nil()
                               , take(X1, X2) -> n__take(X1, X2)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            We consider the the dependency-graph
                            
                              1: activate^#(n__take(X1, X2)) ->
                                 take^#(activate(X1), activate(X2))
                              
                            
                            together with the congruence-graph
                            
                              ->1:{1}                                                     Weak SCC
                              
                              
                              Here dependency-pairs are as follows:
                              
                              WeakDPs DPs:
                                {1: activate^#(n__take(X1, X2)) ->
                                    take^#(activate(X1), activate(X2))}
                            
                            The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                            
                              {1: activate^#(n__take(X1, X2)) ->
                                  take^#(activate(X1), activate(X2))}
                            
                            We consider the following Problem:
                            
                              Weak Trs:
                                {  activate(n__from(X)) -> from(activate(X))
                                 , activate(n__s(X)) -> s(activate(X))
                                 , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                                 , activate(X) -> X
                                 , from(X) -> n__from(X)
                                 , s(X) -> n__s(X)
                                 , from(X) -> cons(X, n__from(n__s(X)))
                                 , take(0(), XS) -> nil()
                                 , take(X1, X2) -> n__take(X1, X2)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              We consider the following Problem:
                              
                                Weak Trs:
                                  {  activate(n__from(X)) -> from(activate(X))
                                   , activate(n__s(X)) -> s(activate(X))
                                   , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                                   , activate(X) -> X
                                   , from(X) -> n__from(X)
                                   , s(X) -> n__s(X)
                                   , from(X) -> cons(X, n__from(n__s(X)))
                                   , take(0(), XS) -> nil()
                                   , take(X1, X2) -> n__take(X1, X2)}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(O(1),O(1))
                              
                              Proof:
                                No rule is usable.
                                
                                We consider the following Problem:
                                
                                  StartTerms: basic terms
                                  Strategy: innermost
                                
                                Certificate: YES(O(1),O(1))
                                
                                Proof:
                                  Empty rules are trivially bounded
                        
                        * Path 2:{5}: YES(O(1),O(1))
                          --------------------------
                          
                          We consider the following Problem:
                          
                            Weak Trs:
                              {  activate(n__from(X)) -> from(activate(X))
                               , activate(n__s(X)) -> s(activate(X))
                               , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                               , activate(X) -> X
                               , from(X) -> n__from(X)
                               , s(X) -> n__s(X)
                               , from(X) -> cons(X, n__from(n__s(X)))
                               , take(0(), XS) -> nil()
                               , take(X1, X2) -> n__take(X1, X2)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            We consider the following Problem:
                            
                              Weak Trs:
                                {  activate(n__from(X)) -> from(activate(X))
                                 , activate(n__s(X)) -> s(activate(X))
                                 , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                                 , activate(X) -> X
                                 , from(X) -> n__from(X)
                                 , s(X) -> n__s(X)
                                 , from(X) -> cons(X, n__from(n__s(X)))
                                 , take(0(), XS) -> nil()
                                 , take(X1, X2) -> n__take(X1, X2)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              We consider the following Problem:
                              
                                Weak Trs:
                                  {  activate(n__from(X)) -> from(activate(X))
                                   , activate(n__s(X)) -> s(activate(X))
                                   , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                                   , activate(X) -> X
                                   , from(X) -> n__from(X)
                                   , s(X) -> n__s(X)
                                   , from(X) -> cons(X, n__from(n__s(X)))
                                   , take(0(), XS) -> nil()
                                   , take(X1, X2) -> n__take(X1, X2)}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(O(1),O(1))
                              
                              Proof:
                                No rule is usable.
                                
                                We consider the following Problem:
                                
                                  StartTerms: basic terms
                                  Strategy: innermost
                                
                                Certificate: YES(O(1),O(1))
                                
                                Proof:
                                  Empty rules are trivially bounded
                        
                        * Path 1:{6}: YES(O(1),O(1))
                          --------------------------
                          
                          We consider the following Problem:
                          
                            Weak Trs:
                              {  activate(n__from(X)) -> from(activate(X))
                               , activate(n__s(X)) -> s(activate(X))
                               , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                               , activate(X) -> X
                               , from(X) -> n__from(X)
                               , s(X) -> n__s(X)
                               , from(X) -> cons(X, n__from(n__s(X)))
                               , take(0(), XS) -> nil()
                               , take(X1, X2) -> n__take(X1, X2)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            We consider the following Problem:
                            
                              Weak Trs:
                                {  activate(n__from(X)) -> from(activate(X))
                                 , activate(n__s(X)) -> s(activate(X))
                                 , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                                 , activate(X) -> X
                                 , from(X) -> n__from(X)
                                 , s(X) -> n__s(X)
                                 , from(X) -> cons(X, n__from(n__s(X)))
                                 , take(0(), XS) -> nil()
                                 , take(X1, X2) -> n__take(X1, X2)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              We consider the following Problem:
                              
                                Weak Trs:
                                  {  activate(n__from(X)) -> from(activate(X))
                                   , activate(n__s(X)) -> s(activate(X))
                                   , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
                                   , activate(X) -> X
                                   , from(X) -> n__from(X)
                                   , s(X) -> n__s(X)
                                   , from(X) -> cons(X, n__from(n__s(X)))
                                   , take(0(), XS) -> nil()
                                   , take(X1, X2) -> n__take(X1, X2)}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(O(1),O(1))
                              
                              Proof:
                                No rule is usable.
                                
                                We consider the following Problem:
                                
                                  StartTerms: basic terms
                                  Strategy: innermost
                                
                                Certificate: YES(O(1),O(1))
                                
                                Proof:
                                  Empty rules are trivially bounded

Hurray, we answered YES(?,O(n^1))