(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
from(X) → cons(X, n__from(n__s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(activate(XS))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
from(X) → n__from(X)
s(X) → n__s(X)
take(X1, X2) → n__take(X1, X2)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
from(z0) → cons(z0, n__from(n__s(z0)))
from(z0) → n__from(z0)
head(cons(z0, z1)) → z0
2nd(cons(z0, z1)) → head(activate(z1))
take(0, z0) → nil
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
take(z0, z1) → n__take(z0, z1)
sel(0, cons(z0, z1)) → z0
sel(s(z0), cons(z1, z2)) → sel(z0, activate(z2))
s(z0) → n__s(z0)
activate(n__from(z0)) → from(activate(z0))
activate(n__s(z0)) → s(activate(z0))
activate(n__take(z0, z1)) → take(activate(z0), activate(z1))
activate(z0) → z0
Tuples:
2ND(cons(z0, z1)) → c3(HEAD(activate(z1)), ACTIVATE(z1))
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
ACTIVATE(n__from(z0)) → c10(FROM(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(S(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(TAKE(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
S tuples:
2ND(cons(z0, z1)) → c3(HEAD(activate(z1)), ACTIVATE(z1))
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
ACTIVATE(n__from(z0)) → c10(FROM(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(S(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(TAKE(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
K tuples:none
Defined Rule Symbols:
from, head, 2nd, take, sel, s, activate
Defined Pair Symbols:
2ND, TAKE, SEL, ACTIVATE
Compound Symbols:
c3, c5, c8, c10, c11, c12
(3) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
from(z0) → cons(z0, n__from(n__s(z0)))
from(z0) → n__from(z0)
head(cons(z0, z1)) → z0
2nd(cons(z0, z1)) → head(activate(z1))
take(0, z0) → nil
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
take(z0, z1) → n__take(z0, z1)
sel(0, cons(z0, z1)) → z0
sel(s(z0), cons(z1, z2)) → sel(z0, activate(z2))
s(z0) → n__s(z0)
activate(n__from(z0)) → from(activate(z0))
activate(n__s(z0)) → s(activate(z0))
activate(n__take(z0, z1)) → take(activate(z0), activate(z1))
activate(z0) → z0
Tuples:
2ND(cons(z0, z1)) → c3(HEAD(activate(z1)), ACTIVATE(z1))
ACTIVATE(n__from(z0)) → c10(FROM(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(S(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(TAKE(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
S tuples:
2ND(cons(z0, z1)) → c3(HEAD(activate(z1)), ACTIVATE(z1))
ACTIVATE(n__from(z0)) → c10(FROM(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(S(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(TAKE(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
K tuples:none
Defined Rule Symbols:
from, head, 2nd, take, sel, s, activate
Defined Pair Symbols:
2ND, ACTIVATE
Compound Symbols:
c3, c10, c11, c12
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
from(z0) → cons(z0, n__from(n__s(z0)))
from(z0) → n__from(z0)
head(cons(z0, z1)) → z0
2nd(cons(z0, z1)) → head(activate(z1))
take(0, z0) → nil
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
take(z0, z1) → n__take(z0, z1)
sel(0, cons(z0, z1)) → z0
sel(s(z0), cons(z1, z2)) → sel(z0, activate(z2))
s(z0) → n__s(z0)
activate(n__from(z0)) → from(activate(z0))
activate(n__s(z0)) → s(activate(z0))
activate(n__take(z0, z1)) → take(activate(z0), activate(z1))
activate(z0) → z0
Tuples:
2ND(cons(z0, z1)) → c3(ACTIVATE(z1))
ACTIVATE(n__from(z0)) → c10(ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(ACTIVATE(z0), ACTIVATE(z1))
S tuples:
2ND(cons(z0, z1)) → c3(ACTIVATE(z1))
ACTIVATE(n__from(z0)) → c10(ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(ACTIVATE(z0), ACTIVATE(z1))
K tuples:none
Defined Rule Symbols:
from, head, 2nd, take, sel, s, activate
Defined Pair Symbols:
2ND, ACTIVATE
Compound Symbols:
c3, c10, c11, c12
(7) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
2ND(cons(z0, z1)) → c3(ACTIVATE(z1))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
from(z0) → cons(z0, n__from(n__s(z0)))
from(z0) → n__from(z0)
head(cons(z0, z1)) → z0
2nd(cons(z0, z1)) → head(activate(z1))
take(0, z0) → nil
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
take(z0, z1) → n__take(z0, z1)
sel(0, cons(z0, z1)) → z0
sel(s(z0), cons(z1, z2)) → sel(z0, activate(z2))
s(z0) → n__s(z0)
activate(n__from(z0)) → from(activate(z0))
activate(n__s(z0)) → s(activate(z0))
activate(n__take(z0, z1)) → take(activate(z0), activate(z1))
activate(z0) → z0
Tuples:
2ND(cons(z0, z1)) → c3(ACTIVATE(z1))
ACTIVATE(n__from(z0)) → c10(ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(ACTIVATE(z0), ACTIVATE(z1))
S tuples:
ACTIVATE(n__from(z0)) → c10(ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(ACTIVATE(z0), ACTIVATE(z1))
K tuples:
2ND(cons(z0, z1)) → c3(ACTIVATE(z1))
Defined Rule Symbols:
from, head, 2nd, take, sel, s, activate
Defined Pair Symbols:
2ND, ACTIVATE
Compound Symbols:
c3, c10, c11, c12
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVATE(n__from(z0)) → c10(ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(ACTIVATE(z0), ACTIVATE(z1))
We considered the (Usable) Rules:none
And the Tuples:
2ND(cons(z0, z1)) → c3(ACTIVATE(z1))
ACTIVATE(n__from(z0)) → c10(ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(ACTIVATE(z0), ACTIVATE(z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(2ND(x1)) = [4]x1
POL(ACTIVATE(x1)) = [3] + [4]x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(cons(x1, x2)) = [5] + x2
POL(n__from(x1)) = [5] + x1
POL(n__s(x1)) = [5] + x1
POL(n__take(x1, x2)) = [4] + x1 + x2
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
from(z0) → cons(z0, n__from(n__s(z0)))
from(z0) → n__from(z0)
head(cons(z0, z1)) → z0
2nd(cons(z0, z1)) → head(activate(z1))
take(0, z0) → nil
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
take(z0, z1) → n__take(z0, z1)
sel(0, cons(z0, z1)) → z0
sel(s(z0), cons(z1, z2)) → sel(z0, activate(z2))
s(z0) → n__s(z0)
activate(n__from(z0)) → from(activate(z0))
activate(n__s(z0)) → s(activate(z0))
activate(n__take(z0, z1)) → take(activate(z0), activate(z1))
activate(z0) → z0
Tuples:
2ND(cons(z0, z1)) → c3(ACTIVATE(z1))
ACTIVATE(n__from(z0)) → c10(ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(ACTIVATE(z0), ACTIVATE(z1))
S tuples:none
K tuples:
2ND(cons(z0, z1)) → c3(ACTIVATE(z1))
ACTIVATE(n__from(z0)) → c10(ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c11(ACTIVATE(z0))
ACTIVATE(n__take(z0, z1)) → c12(ACTIVATE(z0), ACTIVATE(z1))
Defined Rule Symbols:
from, head, 2nd, take, sel, s, activate
Defined Pair Symbols:
2ND, ACTIVATE
Compound Symbols:
c3, c10, c11, c12
(11) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(12) BOUNDS(O(1), O(1))