We consider the following Problem: Strict Trs: { 2nd(cons1(X, cons(Y, Z))) -> Y , 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1))) , from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X) , activate(n__from(X)) -> from(X) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { 2nd(cons1(X, cons(Y, Z))) -> Y , 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1))) , from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X) , activate(n__from(X)) -> from(X) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(2nd) = {1}, Uargs(cons1) = {2}, Uargs(cons) = {}, Uargs(activate) = {}, Uargs(from) = {}, Uargs(n__from) = {}, Uargs(s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: 2nd(x1) = [1 1] x1 + [1] [0 0] [1] cons1(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 0] [1 0] [0] activate(x1) = [1 0] x1 + [0] [0 0] [1] from(x1) = [1 0] x1 + [2] [0 0] [0] n__from(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { 2nd(cons1(X, cons(Y, Z))) -> Y , 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1))) , activate(n__from(X)) -> from(X) , activate(X) -> X} Weak Trs: { from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { activate(n__from(X)) -> from(X) , activate(X) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(2nd) = {1}, Uargs(cons1) = {2}, Uargs(cons) = {}, Uargs(activate) = {}, Uargs(from) = {}, Uargs(n__from) = {}, Uargs(s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: 2nd(x1) = [1 1] x1 + [1] [0 0] [1] cons1(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 0] [1 0] [0] activate(x1) = [1 0] x1 + [2] [0 1] [1] from(x1) = [1 0] x1 + [0] [0 0] [0] n__from(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { 2nd(cons1(X, cons(Y, Z))) -> Y , 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1)))} Weak Trs: { activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(2nd) = {1}, Uargs(cons1) = {2}, Uargs(cons) = {}, Uargs(activate) = {}, Uargs(from) = {}, Uargs(n__from) = {}, Uargs(s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: 2nd(x1) = [1 1] x1 + [1] [0 0] [1] cons1(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 0] [1 0] [2] activate(x1) = [1 0] x1 + [0] [0 1] [3] from(x1) = [1 0] x1 + [0] [0 0] [2] n__from(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {2nd(cons1(X, cons(Y, Z))) -> Y} Weak Trs: { 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1))) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {2nd(cons1(X, cons(Y, Z))) -> Y} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(2nd) = {1}, Uargs(cons1) = {2}, Uargs(cons) = {}, Uargs(activate) = {}, Uargs(from) = {}, Uargs(n__from) = {}, Uargs(s) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: 2nd(x1) = [1 0] x1 + [1] [0 1] [1] cons1(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 1] [0] cons(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] activate(x1) = [1 0] x1 + [0] [0 1] [0] from(x1) = [1 0] x1 + [0] [0 1] [0] n__from(x1) = [1 0] x1 + [0] [0 1] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Weak Trs: { 2nd(cons1(X, cons(Y, Z))) -> Y , 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1))) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { 2nd(cons1(X, cons(Y, Z))) -> Y , 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1))) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))