We consider the following Problem:
Strict Trs:
{ 2nd(cons1(X, cons(Y, Z))) -> Y
, 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1)))
, from(X) -> cons(X, n__from(s(X)))
, from(X) -> n__from(X)
, activate(n__from(X)) -> from(X)
, activate(X) -> X}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
We consider the following Problem:
Strict Trs:
{ 2nd(cons1(X, cons(Y, Z))) -> Y
, 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1)))
, from(X) -> cons(X, n__from(s(X)))
, from(X) -> n__from(X)
, activate(n__from(X)) -> from(X)
, activate(X) -> X}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component:
{ from(X) -> cons(X, n__from(s(X)))
, from(X) -> n__from(X)}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(2nd) = {1}, Uargs(cons1) = {2}, Uargs(cons) = {},
Uargs(activate) = {}, Uargs(from) = {}, Uargs(n__from) = {},
Uargs(s) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
2nd(x1) = [1 1] x1 + [1]
[0 0] [1]
cons1(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
[0 0] [0 0] [0]
cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
[0 0] [1 0] [0]
activate(x1) = [1 0] x1 + [0]
[0 0] [1]
from(x1) = [1 0] x1 + [2]
[0 0] [0]
n__from(x1) = [1 0] x1 + [0]
[0 0] [0]
s(x1) = [0 0] x1 + [0]
[0 0] [0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ 2nd(cons1(X, cons(Y, Z))) -> Y
, 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1)))
, activate(n__from(X)) -> from(X)
, activate(X) -> X}
Weak Trs:
{ from(X) -> cons(X, n__from(s(X)))
, from(X) -> n__from(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component:
{ activate(n__from(X)) -> from(X)
, activate(X) -> X}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(2nd) = {1}, Uargs(cons1) = {2}, Uargs(cons) = {},
Uargs(activate) = {}, Uargs(from) = {}, Uargs(n__from) = {},
Uargs(s) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
2nd(x1) = [1 1] x1 + [1]
[0 0] [1]
cons1(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
[0 0] [0 0] [0]
cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
[0 0] [1 0] [0]
activate(x1) = [1 0] x1 + [2]
[0 1] [1]
from(x1) = [1 0] x1 + [0]
[0 0] [0]
n__from(x1) = [1 0] x1 + [0]
[0 0] [0]
s(x1) = [0 0] x1 + [0]
[0 0] [0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ 2nd(cons1(X, cons(Y, Z))) -> Y
, 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1)))}
Weak Trs:
{ activate(n__from(X)) -> from(X)
, activate(X) -> X
, from(X) -> cons(X, n__from(s(X)))
, from(X) -> n__from(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1)))}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(2nd) = {1}, Uargs(cons1) = {2}, Uargs(cons) = {},
Uargs(activate) = {}, Uargs(from) = {}, Uargs(n__from) = {},
Uargs(s) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
2nd(x1) = [1 1] x1 + [1]
[0 0] [1]
cons1(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
[0 0] [0 0] [0]
cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
[0 0] [1 0] [2]
activate(x1) = [1 0] x1 + [0]
[0 1] [3]
from(x1) = [1 0] x1 + [0]
[0 0] [2]
n__from(x1) = [1 0] x1 + [0]
[0 0] [0]
s(x1) = [0 0] x1 + [0]
[0 0] [0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs: {2nd(cons1(X, cons(Y, Z))) -> Y}
Weak Trs:
{ 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1)))
, activate(n__from(X)) -> from(X)
, activate(X) -> X
, from(X) -> cons(X, n__from(s(X)))
, from(X) -> n__from(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {2nd(cons1(X, cons(Y, Z))) -> Y}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(2nd) = {1}, Uargs(cons1) = {2}, Uargs(cons) = {},
Uargs(activate) = {}, Uargs(from) = {}, Uargs(n__from) = {},
Uargs(s) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
2nd(x1) = [1 0] x1 + [1]
[0 1] [1]
cons1(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
[0 0] [0 1] [0]
cons(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
[0 1] [0 1] [0]
activate(x1) = [1 0] x1 + [0]
[0 1] [0]
from(x1) = [1 0] x1 + [0]
[0 1] [0]
n__from(x1) = [1 0] x1 + [0]
[0 1] [0]
s(x1) = [0 0] x1 + [0]
[0 0] [0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Weak Trs:
{ 2nd(cons1(X, cons(Y, Z))) -> Y
, 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1)))
, activate(n__from(X)) -> from(X)
, activate(X) -> X
, from(X) -> cons(X, n__from(s(X)))
, from(X) -> n__from(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(O(1),O(1))
Proof:
We consider the following Problem:
Weak Trs:
{ 2nd(cons1(X, cons(Y, Z))) -> Y
, 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1)))
, activate(n__from(X)) -> from(X)
, activate(X) -> X
, from(X) -> cons(X, n__from(s(X)))
, from(X) -> n__from(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(O(1),O(1))
Proof:
Empty rules are trivially bounded
Hurray, we answered YES(?,O(n^1))