(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(2nd(cons1(X, cons(Y, Z)))) → mark(Y)
active(2nd(cons(X, X1))) → mark(2nd(cons1(X, X1)))
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons1(X1, X2)) → cons1(active(X1), X2)
active(cons1(X1, X2)) → cons1(X1, active(X2))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons1(mark(X1), X2) → mark(cons1(X1, X2))
cons1(X1, mark(X2)) → mark(cons1(X1, X2))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(cons1(X1, X2)) → cons1(proper(X1), proper(X2))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons1(ok(X1), ok(X2)) → ok(cons1(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(2nd(cons1(z0, cons(z1, z2)))) → mark(z1)
active(2nd(cons(z0, z1))) → mark(2nd(cons1(z0, z1)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(2nd(z0)) → 2nd(active(z0))
active(cons(z0, z1)) → cons(active(z0), z1)
active(from(z0)) → from(active(z0))
active(s(z0)) → s(active(z0))
active(cons1(z0, z1)) → cons1(active(z0), z1)
active(cons1(z0, z1)) → cons1(z0, active(z1))
2nd(mark(z0)) → mark(2nd(z0))
2nd(ok(z0)) → ok(2nd(z0))
cons(mark(z0), z1) → mark(cons(z0, z1))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(mark(z0)) → mark(from(z0))
from(ok(z0)) → ok(from(z0))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
cons1(mark(z0), z1) → mark(cons1(z0, z1))
cons1(z0, mark(z1)) → mark(cons1(z0, z1))
cons1(ok(z0), ok(z1)) → ok(cons1(z0, z1))
proper(2nd(z0)) → 2nd(proper(z0))
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(s(z0)) → s(proper(z0))
proper(cons1(z0, z1)) → cons1(proper(z0), proper(z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(2nd(cons(z0, z1))) → c1(2ND(cons1(z0, z1)), CONS1(z0, z1))
ACTIVE(from(z0)) → c2(CONS(z0, from(s(z0))), FROM(s(z0)), S(z0))
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c25(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(2nd(cons(z0, z1))) → c1(2ND(cons1(z0, z1)), CONS1(z0, z1))
ACTIVE(from(z0)) → c2(CONS(z0, from(s(z0))), FROM(s(z0)), S(z0))
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c25(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, 2nd, cons, from, s, cons1, proper, top
Defined Pair Symbols:
ACTIVE, 2ND, CONS, FROM, S, CONS1, PROPER, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26
(3) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(2nd(cons1(z0, cons(z1, z2)))) → mark(z1)
active(2nd(cons(z0, z1))) → mark(2nd(cons1(z0, z1)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(2nd(z0)) → 2nd(active(z0))
active(cons(z0, z1)) → cons(active(z0), z1)
active(from(z0)) → from(active(z0))
active(s(z0)) → s(active(z0))
active(cons1(z0, z1)) → cons1(active(z0), z1)
active(cons1(z0, z1)) → cons1(z0, active(z1))
2nd(mark(z0)) → mark(2nd(z0))
2nd(ok(z0)) → ok(2nd(z0))
cons(mark(z0), z1) → mark(cons(z0, z1))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(mark(z0)) → mark(from(z0))
from(ok(z0)) → ok(from(z0))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
cons1(mark(z0), z1) → mark(cons1(z0, z1))
cons1(z0, mark(z1)) → mark(cons1(z0, z1))
cons1(ok(z0), ok(z1)) → ok(cons1(z0, z1))
proper(2nd(z0)) → 2nd(proper(z0))
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(s(z0)) → s(proper(z0))
proper(cons1(z0, z1)) → cons1(proper(z0), proper(z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(2nd(cons(z0, z1))) → c1(2ND(cons1(z0, z1)), CONS1(z0, z1))
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c25(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c2(S(z0))
S tuples:
ACTIVE(2nd(cons(z0, z1))) → c1(2ND(cons1(z0, z1)), CONS1(z0, z1))
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c25(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c2(S(z0))
K tuples:none
Defined Rule Symbols:
active, 2nd, cons, from, s, cons1, proper, top
Defined Pair Symbols:
ACTIVE, 2ND, CONS, FROM, S, CONS1, PROPER, TOP
Compound Symbols:
c1, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c2
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVE(2nd(cons(z0, z1))) → c1(2ND(cons1(z0, z1)), CONS1(z0, z1))
ACTIVE(from(z0)) → c2(S(z0))
We considered the (Usable) Rules:
active(2nd(cons1(z0, cons(z1, z2)))) → mark(z1)
active(2nd(cons(z0, z1))) → mark(2nd(cons1(z0, z1)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(2nd(z0)) → 2nd(active(z0))
active(cons(z0, z1)) → cons(active(z0), z1)
active(from(z0)) → from(active(z0))
active(s(z0)) → s(active(z0))
active(cons1(z0, z1)) → cons1(active(z0), z1)
active(cons1(z0, z1)) → cons1(z0, active(z1))
cons1(z0, mark(z1)) → mark(cons1(z0, z1))
cons1(ok(z0), ok(z1)) → ok(cons1(z0, z1))
cons1(mark(z0), z1) → mark(cons1(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
from(mark(z0)) → mark(from(z0))
from(ok(z0)) → ok(from(z0))
cons(mark(z0), z1) → mark(cons(z0, z1))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
2nd(mark(z0)) → mark(2nd(z0))
2nd(ok(z0)) → ok(2nd(z0))
proper(2nd(z0)) → 2nd(proper(z0))
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(s(z0)) → s(proper(z0))
proper(cons1(z0, z1)) → cons1(proper(z0), proper(z1))
And the Tuples:
ACTIVE(2nd(cons(z0, z1))) → c1(2ND(cons1(z0, z1)), CONS1(z0, z1))
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c25(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c2(S(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(2ND(x1)) = 0
POL(2nd(x1)) = [2]x1
POL(ACTIVE(x1)) = [2]
POL(CONS(x1, x2)) = 0
POL(CONS1(x1, x2)) = 0
POL(FROM(x1)) = 0
POL(PROPER(x1)) = 0
POL(S(x1)) = 0
POL(TOP(x1)) = [2]x1
POL(active(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c2(x1)) = x1
POL(c20(x1, x2)) = x1 + x2
POL(c21(x1, x2, x3)) = x1 + x2 + x3
POL(c22(x1, x2)) = x1 + x2
POL(c23(x1, x2)) = x1 + x2
POL(c24(x1, x2, x3)) = x1 + x2 + x3
POL(c25(x1, x2)) = x1 + x2
POL(c26(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1)) = x1
POL(cons(x1, x2)) = [2]x1
POL(cons1(x1, x2)) = x1
POL(from(x1)) = [5]x1
POL(mark(x1)) = 0
POL(ok(x1)) = [1] + x1
POL(proper(x1)) = 0
POL(s(x1)) = x1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(2nd(cons1(z0, cons(z1, z2)))) → mark(z1)
active(2nd(cons(z0, z1))) → mark(2nd(cons1(z0, z1)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(2nd(z0)) → 2nd(active(z0))
active(cons(z0, z1)) → cons(active(z0), z1)
active(from(z0)) → from(active(z0))
active(s(z0)) → s(active(z0))
active(cons1(z0, z1)) → cons1(active(z0), z1)
active(cons1(z0, z1)) → cons1(z0, active(z1))
2nd(mark(z0)) → mark(2nd(z0))
2nd(ok(z0)) → ok(2nd(z0))
cons(mark(z0), z1) → mark(cons(z0, z1))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(mark(z0)) → mark(from(z0))
from(ok(z0)) → ok(from(z0))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
cons1(mark(z0), z1) → mark(cons1(z0, z1))
cons1(z0, mark(z1)) → mark(cons1(z0, z1))
cons1(ok(z0), ok(z1)) → ok(cons1(z0, z1))
proper(2nd(z0)) → 2nd(proper(z0))
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(s(z0)) → s(proper(z0))
proper(cons1(z0, z1)) → cons1(proper(z0), proper(z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(2nd(cons(z0, z1))) → c1(2ND(cons1(z0, z1)), CONS1(z0, z1))
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c25(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c2(S(z0))
S tuples:
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c25(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
K tuples:
ACTIVE(2nd(cons(z0, z1))) → c1(2ND(cons1(z0, z1)), CONS1(z0, z1))
ACTIVE(from(z0)) → c2(S(z0))
Defined Rule Symbols:
active, 2nd, cons, from, s, cons1, proper, top
Defined Pair Symbols:
ACTIVE, 2ND, CONS, FROM, S, CONS1, PROPER, TOP
Compound Symbols:
c1, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c2
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
We considered the (Usable) Rules:
active(2nd(cons1(z0, cons(z1, z2)))) → mark(z1)
active(2nd(cons(z0, z1))) → mark(2nd(cons1(z0, z1)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(2nd(z0)) → 2nd(active(z0))
active(cons(z0, z1)) → cons(active(z0), z1)
active(from(z0)) → from(active(z0))
active(s(z0)) → s(active(z0))
active(cons1(z0, z1)) → cons1(active(z0), z1)
active(cons1(z0, z1)) → cons1(z0, active(z1))
cons1(z0, mark(z1)) → mark(cons1(z0, z1))
cons1(ok(z0), ok(z1)) → ok(cons1(z0, z1))
cons1(mark(z0), z1) → mark(cons1(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
from(mark(z0)) → mark(from(z0))
from(ok(z0)) → ok(from(z0))
cons(mark(z0), z1) → mark(cons(z0, z1))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
2nd(mark(z0)) → mark(2nd(z0))
2nd(ok(z0)) → ok(2nd(z0))
proper(2nd(z0)) → 2nd(proper(z0))
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(s(z0)) → s(proper(z0))
proper(cons1(z0, z1)) → cons1(proper(z0), proper(z1))
And the Tuples:
ACTIVE(2nd(cons(z0, z1))) → c1(2ND(cons1(z0, z1)), CONS1(z0, z1))
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c25(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c2(S(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(2ND(x1)) = 0
POL(2nd(x1)) = [4]x1
POL(ACTIVE(x1)) = [3]
POL(CONS(x1, x2)) = 0
POL(CONS1(x1, x2)) = 0
POL(FROM(x1)) = 0
POL(PROPER(x1)) = 0
POL(S(x1)) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c2(x1)) = x1
POL(c20(x1, x2)) = x1 + x2
POL(c21(x1, x2, x3)) = x1 + x2 + x3
POL(c22(x1, x2)) = x1 + x2
POL(c23(x1, x2)) = x1 + x2
POL(c24(x1, x2, x3)) = x1 + x2 + x3
POL(c25(x1, x2)) = x1 + x2
POL(c26(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1)) = x1
POL(cons(x1, x2)) = [2]x1
POL(cons1(x1, x2)) = x1
POL(from(x1)) = [2]x1
POL(mark(x1)) = 0
POL(ok(x1)) = [4] + x1
POL(proper(x1)) = 0
POL(s(x1)) = [2]x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(2nd(cons1(z0, cons(z1, z2)))) → mark(z1)
active(2nd(cons(z0, z1))) → mark(2nd(cons1(z0, z1)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(2nd(z0)) → 2nd(active(z0))
active(cons(z0, z1)) → cons(active(z0), z1)
active(from(z0)) → from(active(z0))
active(s(z0)) → s(active(z0))
active(cons1(z0, z1)) → cons1(active(z0), z1)
active(cons1(z0, z1)) → cons1(z0, active(z1))
2nd(mark(z0)) → mark(2nd(z0))
2nd(ok(z0)) → ok(2nd(z0))
cons(mark(z0), z1) → mark(cons(z0, z1))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(mark(z0)) → mark(from(z0))
from(ok(z0)) → ok(from(z0))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
cons1(mark(z0), z1) → mark(cons1(z0, z1))
cons1(z0, mark(z1)) → mark(cons1(z0, z1))
cons1(ok(z0), ok(z1)) → ok(cons1(z0, z1))
proper(2nd(z0)) → 2nd(proper(z0))
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(s(z0)) → s(proper(z0))
proper(cons1(z0, z1)) → cons1(proper(z0), proper(z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(2nd(cons(z0, z1))) → c1(2ND(cons1(z0, z1)), CONS1(z0, z1))
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c25(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c2(S(z0))
S tuples:
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c25(TOP(proper(z0)), PROPER(z0))
K tuples:
ACTIVE(2nd(cons(z0, z1))) → c1(2ND(cons1(z0, z1)), CONS1(z0, z1))
ACTIVE(from(z0)) → c2(S(z0))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
Defined Rule Symbols:
active, 2nd, cons, from, s, cons1, proper, top
Defined Pair Symbols:
ACTIVE, 2ND, CONS, FROM, S, CONS1, PROPER, TOP
Compound Symbols:
c1, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c2
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(z0)) → c25(TOP(proper(z0)), PROPER(z0))
We considered the (Usable) Rules:
active(2nd(cons1(z0, cons(z1, z2)))) → mark(z1)
active(2nd(cons(z0, z1))) → mark(2nd(cons1(z0, z1)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(2nd(z0)) → 2nd(active(z0))
active(cons(z0, z1)) → cons(active(z0), z1)
active(from(z0)) → from(active(z0))
active(s(z0)) → s(active(z0))
active(cons1(z0, z1)) → cons1(active(z0), z1)
active(cons1(z0, z1)) → cons1(z0, active(z1))
cons1(z0, mark(z1)) → mark(cons1(z0, z1))
cons1(ok(z0), ok(z1)) → ok(cons1(z0, z1))
cons1(mark(z0), z1) → mark(cons1(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
from(mark(z0)) → mark(from(z0))
from(ok(z0)) → ok(from(z0))
cons(mark(z0), z1) → mark(cons(z0, z1))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
2nd(mark(z0)) → mark(2nd(z0))
2nd(ok(z0)) → ok(2nd(z0))
proper(2nd(z0)) → 2nd(proper(z0))
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(s(z0)) → s(proper(z0))
proper(cons1(z0, z1)) → cons1(proper(z0), proper(z1))
And the Tuples:
ACTIVE(2nd(cons(z0, z1))) → c1(2ND(cons1(z0, z1)), CONS1(z0, z1))
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c25(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c2(S(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(2ND(x1)) = 0
POL(2nd(x1)) = x1
POL(ACTIVE(x1)) = 0
POL(CONS(x1, x2)) = 0
POL(CONS1(x1, x2)) = 0
POL(FROM(x1)) = 0
POL(PROPER(x1)) = 0
POL(S(x1)) = 0
POL(TOP(x1)) = [2]x1
POL(active(x1)) = [2] + x1
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c2(x1)) = x1
POL(c20(x1, x2)) = x1 + x2
POL(c21(x1, x2, x3)) = x1 + x2 + x3
POL(c22(x1, x2)) = x1 + x2
POL(c23(x1, x2)) = x1 + x2
POL(c24(x1, x2, x3)) = x1 + x2 + x3
POL(c25(x1, x2)) = x1 + x2
POL(c26(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1)) = x1
POL(cons(x1, x2)) = x1
POL(cons1(x1, x2)) = x1 + x2
POL(from(x1)) = x1
POL(mark(x1)) = [1]
POL(ok(x1)) = [2] + x1
POL(proper(x1)) = 0
POL(s(x1)) = x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(2nd(cons1(z0, cons(z1, z2)))) → mark(z1)
active(2nd(cons(z0, z1))) → mark(2nd(cons1(z0, z1)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(2nd(z0)) → 2nd(active(z0))
active(cons(z0, z1)) → cons(active(z0), z1)
active(from(z0)) → from(active(z0))
active(s(z0)) → s(active(z0))
active(cons1(z0, z1)) → cons1(active(z0), z1)
active(cons1(z0, z1)) → cons1(z0, active(z1))
2nd(mark(z0)) → mark(2nd(z0))
2nd(ok(z0)) → ok(2nd(z0))
cons(mark(z0), z1) → mark(cons(z0, z1))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(mark(z0)) → mark(from(z0))
from(ok(z0)) → ok(from(z0))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
cons1(mark(z0), z1) → mark(cons1(z0, z1))
cons1(z0, mark(z1)) → mark(cons1(z0, z1))
cons1(ok(z0), ok(z1)) → ok(cons1(z0, z1))
proper(2nd(z0)) → 2nd(proper(z0))
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(s(z0)) → s(proper(z0))
proper(cons1(z0, z1)) → cons1(proper(z0), proper(z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(2nd(cons(z0, z1))) → c1(2ND(cons1(z0, z1)), CONS1(z0, z1))
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c25(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c2(S(z0))
S tuples:
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
K tuples:
ACTIVE(2nd(cons(z0, z1))) → c1(2ND(cons1(z0, z1)), CONS1(z0, z1))
ACTIVE(from(z0)) → c2(S(z0))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c25(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, 2nd, cons, from, s, cons1, proper, top
Defined Pair Symbols:
ACTIVE, 2ND, CONS, FROM, S, CONS1, PROPER, TOP
Compound Symbols:
c1, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c2
(11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
2nd(
cons(
z0,
z1))) →
c1(
2ND(
cons1(
z0,
z1)),
CONS1(
z0,
z1)) by
ACTIVE(2nd(cons(z0, mark(z1)))) → c1(2ND(mark(cons1(z0, z1))), CONS1(z0, mark(z1)))
ACTIVE(2nd(cons(mark(z0), z1))) → c1(2ND(mark(cons1(z0, z1))), CONS1(mark(z0), z1))
ACTIVE(2nd(cons(ok(z0), ok(z1)))) → c1(2ND(ok(cons1(z0, z1))), CONS1(ok(z0), ok(z1)))
ACTIVE(2nd(cons(x0, x1))) → c1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(2nd(cons1(z0, cons(z1, z2)))) → mark(z1)
active(2nd(cons(z0, z1))) → mark(2nd(cons1(z0, z1)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(2nd(z0)) → 2nd(active(z0))
active(cons(z0, z1)) → cons(active(z0), z1)
active(from(z0)) → from(active(z0))
active(s(z0)) → s(active(z0))
active(cons1(z0, z1)) → cons1(active(z0), z1)
active(cons1(z0, z1)) → cons1(z0, active(z1))
2nd(mark(z0)) → mark(2nd(z0))
2nd(ok(z0)) → ok(2nd(z0))
cons(mark(z0), z1) → mark(cons(z0, z1))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(mark(z0)) → mark(from(z0))
from(ok(z0)) → ok(from(z0))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
cons1(mark(z0), z1) → mark(cons1(z0, z1))
cons1(z0, mark(z1)) → mark(cons1(z0, z1))
cons1(ok(z0), ok(z1)) → ok(cons1(z0, z1))
proper(2nd(z0)) → 2nd(proper(z0))
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(s(z0)) → s(proper(z0))
proper(cons1(z0, z1)) → cons1(proper(z0), proper(z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c25(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c2(S(z0))
ACTIVE(2nd(cons(z0, mark(z1)))) → c1(2ND(mark(cons1(z0, z1))), CONS1(z0, mark(z1)))
ACTIVE(2nd(cons(mark(z0), z1))) → c1(2ND(mark(cons1(z0, z1))), CONS1(mark(z0), z1))
ACTIVE(2nd(cons(ok(z0), ok(z1)))) → c1(2ND(ok(cons1(z0, z1))), CONS1(ok(z0), ok(z1)))
ACTIVE(2nd(cons(x0, x1))) → c1
S tuples:
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
K tuples:
ACTIVE(2nd(cons(z0, z1))) → c1(2ND(cons1(z0, z1)), CONS1(z0, z1))
ACTIVE(from(z0)) → c2(S(z0))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c25(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, 2nd, cons, from, s, cons1, proper, top
Defined Pair Symbols:
ACTIVE, 2ND, CONS, FROM, S, CONS1, PROPER, TOP
Compound Symbols:
c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c2, c1, c1
(13) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
ACTIVE(2nd(cons(mark(z0), z1))) → c1(2ND(mark(cons1(z0, z1))), CONS1(mark(z0), z1))
ACTIVE(2nd(cons(ok(z0), ok(z1)))) → c1(2ND(ok(cons1(z0, z1))), CONS1(ok(z0), ok(z1)))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(2nd(cons1(z0, cons(z1, z2)))) → mark(z1)
active(2nd(cons(z0, z1))) → mark(2nd(cons1(z0, z1)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(2nd(z0)) → 2nd(active(z0))
active(cons(z0, z1)) → cons(active(z0), z1)
active(from(z0)) → from(active(z0))
active(s(z0)) → s(active(z0))
active(cons1(z0, z1)) → cons1(active(z0), z1)
active(cons1(z0, z1)) → cons1(z0, active(z1))
2nd(mark(z0)) → mark(2nd(z0))
2nd(ok(z0)) → ok(2nd(z0))
cons(mark(z0), z1) → mark(cons(z0, z1))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(mark(z0)) → mark(from(z0))
from(ok(z0)) → ok(from(z0))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
cons1(mark(z0), z1) → mark(cons1(z0, z1))
cons1(z0, mark(z1)) → mark(cons1(z0, z1))
cons1(ok(z0), ok(z1)) → ok(cons1(z0, z1))
proper(2nd(z0)) → 2nd(proper(z0))
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(s(z0)) → s(proper(z0))
proper(cons1(z0, z1)) → cons1(proper(z0), proper(z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
TOP(mark(z0)) → c25(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
ACTIVE(from(z0)) → c2(S(z0))
ACTIVE(2nd(cons(z0, mark(z1)))) → c1(2ND(mark(cons1(z0, z1))), CONS1(z0, mark(z1)))
ACTIVE(2nd(cons(x0, x1))) → c1
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
S tuples:
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
K tuples:
ACTIVE(from(z0)) → c2(S(z0))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c25(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, 2nd, cons, from, s, cons1, proper, top
Defined Pair Symbols:
2ND, CONS, FROM, S, CONS1, TOP, ACTIVE, PROPER
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c25, c26, c3, c4, c5, c6, c7, c8, c2, c1, c1, c20, c21, c22, c23, c24
(15) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
ACTIVE(2nd(cons(x0, x1))) → c1
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(2nd(cons1(z0, cons(z1, z2)))) → mark(z1)
active(2nd(cons(z0, z1))) → mark(2nd(cons1(z0, z1)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(2nd(z0)) → 2nd(active(z0))
active(cons(z0, z1)) → cons(active(z0), z1)
active(from(z0)) → from(active(z0))
active(s(z0)) → s(active(z0))
active(cons1(z0, z1)) → cons1(active(z0), z1)
active(cons1(z0, z1)) → cons1(z0, active(z1))
2nd(mark(z0)) → mark(2nd(z0))
2nd(ok(z0)) → ok(2nd(z0))
cons(mark(z0), z1) → mark(cons(z0, z1))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(mark(z0)) → mark(from(z0))
from(ok(z0)) → ok(from(z0))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
cons1(mark(z0), z1) → mark(cons1(z0, z1))
cons1(z0, mark(z1)) → mark(cons1(z0, z1))
cons1(ok(z0), ok(z1)) → ok(cons1(z0, z1))
proper(2nd(z0)) → 2nd(proper(z0))
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(s(z0)) → s(proper(z0))
proper(cons1(z0, z1)) → cons1(proper(z0), proper(z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
TOP(mark(z0)) → c25(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
ACTIVE(from(z0)) → c2(S(z0))
ACTIVE(2nd(cons(z0, mark(z1)))) → c1(2ND(mark(cons1(z0, z1))), CONS1(z0, mark(z1)))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
S tuples:
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
K tuples:
ACTIVE(from(z0)) → c2(S(z0))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c25(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, 2nd, cons, from, s, cons1, proper, top
Defined Pair Symbols:
2ND, CONS, FROM, S, CONS1, TOP, ACTIVE, PROPER
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c25, c26, c3, c4, c5, c6, c7, c8, c2, c1, c20, c21, c22, c23, c24
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
mark(
z0)) →
c25(
TOP(
proper(
z0)),
PROPER(
z0)) by
TOP(mark(2nd(z0))) → c25(TOP(2nd(proper(z0))), PROPER(2nd(z0)))
TOP(mark(cons(z0, z1))) → c25(TOP(cons(proper(z0), proper(z1))), PROPER(cons(z0, z1)))
TOP(mark(from(z0))) → c25(TOP(from(proper(z0))), PROPER(from(z0)))
TOP(mark(s(z0))) → c25(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(cons1(z0, z1))) → c25(TOP(cons1(proper(z0), proper(z1))), PROPER(cons1(z0, z1)))
TOP(mark(x0)) → c25
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(2nd(cons1(z0, cons(z1, z2)))) → mark(z1)
active(2nd(cons(z0, z1))) → mark(2nd(cons1(z0, z1)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(2nd(z0)) → 2nd(active(z0))
active(cons(z0, z1)) → cons(active(z0), z1)
active(from(z0)) → from(active(z0))
active(s(z0)) → s(active(z0))
active(cons1(z0, z1)) → cons1(active(z0), z1)
active(cons1(z0, z1)) → cons1(z0, active(z1))
2nd(mark(z0)) → mark(2nd(z0))
2nd(ok(z0)) → ok(2nd(z0))
cons(mark(z0), z1) → mark(cons(z0, z1))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(mark(z0)) → mark(from(z0))
from(ok(z0)) → ok(from(z0))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
cons1(mark(z0), z1) → mark(cons1(z0, z1))
cons1(z0, mark(z1)) → mark(cons1(z0, z1))
cons1(ok(z0), ok(z1)) → ok(cons1(z0, z1))
proper(2nd(z0)) → 2nd(proper(z0))
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(s(z0)) → s(proper(z0))
proper(cons1(z0, z1)) → cons1(proper(z0), proper(z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
ACTIVE(from(z0)) → c2(S(z0))
ACTIVE(2nd(cons(z0, mark(z1)))) → c1(2ND(mark(cons1(z0, z1))), CONS1(z0, mark(z1)))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(2nd(z0))) → c25(TOP(2nd(proper(z0))), PROPER(2nd(z0)))
TOP(mark(cons(z0, z1))) → c25(TOP(cons(proper(z0), proper(z1))), PROPER(cons(z0, z1)))
TOP(mark(from(z0))) → c25(TOP(from(proper(z0))), PROPER(from(z0)))
TOP(mark(s(z0))) → c25(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(cons1(z0, z1))) → c25(TOP(cons1(proper(z0), proper(z1))), PROPER(cons1(z0, z1)))
TOP(mark(x0)) → c25
S tuples:
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
K tuples:
ACTIVE(from(z0)) → c2(S(z0))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c25(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, 2nd, cons, from, s, cons1, proper, top
Defined Pair Symbols:
2ND, CONS, FROM, S, CONS1, TOP, ACTIVE, PROPER
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c26, c3, c4, c5, c6, c7, c8, c2, c1, c20, c21, c22, c23, c24, c25, c25
(19) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
TOP(mark(x0)) → c25
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(2nd(cons1(z0, cons(z1, z2)))) → mark(z1)
active(2nd(cons(z0, z1))) → mark(2nd(cons1(z0, z1)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(2nd(z0)) → 2nd(active(z0))
active(cons(z0, z1)) → cons(active(z0), z1)
active(from(z0)) → from(active(z0))
active(s(z0)) → s(active(z0))
active(cons1(z0, z1)) → cons1(active(z0), z1)
active(cons1(z0, z1)) → cons1(z0, active(z1))
2nd(mark(z0)) → mark(2nd(z0))
2nd(ok(z0)) → ok(2nd(z0))
cons(mark(z0), z1) → mark(cons(z0, z1))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(mark(z0)) → mark(from(z0))
from(ok(z0)) → ok(from(z0))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
cons1(mark(z0), z1) → mark(cons1(z0, z1))
cons1(z0, mark(z1)) → mark(cons1(z0, z1))
cons1(ok(z0), ok(z1)) → ok(cons1(z0, z1))
proper(2nd(z0)) → 2nd(proper(z0))
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(s(z0)) → s(proper(z0))
proper(cons1(z0, z1)) → cons1(proper(z0), proper(z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
ACTIVE(from(z0)) → c2(S(z0))
ACTIVE(2nd(cons(z0, mark(z1)))) → c1(2ND(mark(cons1(z0, z1))), CONS1(z0, mark(z1)))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(2nd(z0))) → c25(TOP(2nd(proper(z0))), PROPER(2nd(z0)))
TOP(mark(cons(z0, z1))) → c25(TOP(cons(proper(z0), proper(z1))), PROPER(cons(z0, z1)))
TOP(mark(from(z0))) → c25(TOP(from(proper(z0))), PROPER(from(z0)))
TOP(mark(s(z0))) → c25(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(cons1(z0, z1))) → c25(TOP(cons1(proper(z0), proper(z1))), PROPER(cons1(z0, z1)))
S tuples:
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
K tuples:
ACTIVE(from(z0)) → c2(S(z0))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
Defined Rule Symbols:
active, 2nd, cons, from, s, cons1, proper, top
Defined Pair Symbols:
2ND, CONS, FROM, S, CONS1, TOP, ACTIVE, PROPER
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c26, c3, c4, c5, c6, c7, c8, c2, c1, c20, c21, c22, c23, c24, c25
(21) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
ok(
z0)) →
c26(
TOP(
active(
z0)),
ACTIVE(
z0)) by
TOP(ok(2nd(cons1(z0, cons(z1, z2))))) → c26(TOP(mark(z1)), ACTIVE(2nd(cons1(z0, cons(z1, z2)))))
TOP(ok(2nd(cons(z0, z1)))) → c26(TOP(mark(2nd(cons1(z0, z1)))), ACTIVE(2nd(cons(z0, z1))))
TOP(ok(from(z0))) → c26(TOP(mark(cons(z0, from(s(z0))))), ACTIVE(from(z0)))
TOP(ok(2nd(z0))) → c26(TOP(2nd(active(z0))), ACTIVE(2nd(z0)))
TOP(ok(cons(z0, z1))) → c26(TOP(cons(active(z0), z1)), ACTIVE(cons(z0, z1)))
TOP(ok(from(z0))) → c26(TOP(from(active(z0))), ACTIVE(from(z0)))
TOP(ok(s(z0))) → c26(TOP(s(active(z0))), ACTIVE(s(z0)))
TOP(ok(cons1(z0, z1))) → c26(TOP(cons1(active(z0), z1)), ACTIVE(cons1(z0, z1)))
TOP(ok(cons1(z0, z1))) → c26(TOP(cons1(z0, active(z1))), ACTIVE(cons1(z0, z1)))
TOP(ok(x0)) → c26
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(2nd(cons1(z0, cons(z1, z2)))) → mark(z1)
active(2nd(cons(z0, z1))) → mark(2nd(cons1(z0, z1)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(2nd(z0)) → 2nd(active(z0))
active(cons(z0, z1)) → cons(active(z0), z1)
active(from(z0)) → from(active(z0))
active(s(z0)) → s(active(z0))
active(cons1(z0, z1)) → cons1(active(z0), z1)
active(cons1(z0, z1)) → cons1(z0, active(z1))
2nd(mark(z0)) → mark(2nd(z0))
2nd(ok(z0)) → ok(2nd(z0))
cons(mark(z0), z1) → mark(cons(z0, z1))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(mark(z0)) → mark(from(z0))
from(ok(z0)) → ok(from(z0))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
cons1(mark(z0), z1) → mark(cons1(z0, z1))
cons1(z0, mark(z1)) → mark(cons1(z0, z1))
cons1(ok(z0), ok(z1)) → ok(cons1(z0, z1))
proper(2nd(z0)) → 2nd(proper(z0))
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(s(z0)) → s(proper(z0))
proper(cons1(z0, z1)) → cons1(proper(z0), proper(z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
ACTIVE(from(z0)) → c2(S(z0))
ACTIVE(2nd(cons(z0, mark(z1)))) → c1(2ND(mark(cons1(z0, z1))), CONS1(z0, mark(z1)))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(2nd(z0))) → c25(TOP(2nd(proper(z0))), PROPER(2nd(z0)))
TOP(mark(cons(z0, z1))) → c25(TOP(cons(proper(z0), proper(z1))), PROPER(cons(z0, z1)))
TOP(mark(from(z0))) → c25(TOP(from(proper(z0))), PROPER(from(z0)))
TOP(mark(s(z0))) → c25(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(cons1(z0, z1))) → c25(TOP(cons1(proper(z0), proper(z1))), PROPER(cons1(z0, z1)))
TOP(ok(2nd(cons1(z0, cons(z1, z2))))) → c26(TOP(mark(z1)), ACTIVE(2nd(cons1(z0, cons(z1, z2)))))
TOP(ok(2nd(cons(z0, z1)))) → c26(TOP(mark(2nd(cons1(z0, z1)))), ACTIVE(2nd(cons(z0, z1))))
TOP(ok(from(z0))) → c26(TOP(mark(cons(z0, from(s(z0))))), ACTIVE(from(z0)))
TOP(ok(2nd(z0))) → c26(TOP(2nd(active(z0))), ACTIVE(2nd(z0)))
TOP(ok(cons(z0, z1))) → c26(TOP(cons(active(z0), z1)), ACTIVE(cons(z0, z1)))
TOP(ok(from(z0))) → c26(TOP(from(active(z0))), ACTIVE(from(z0)))
TOP(ok(s(z0))) → c26(TOP(s(active(z0))), ACTIVE(s(z0)))
TOP(ok(cons1(z0, z1))) → c26(TOP(cons1(active(z0), z1)), ACTIVE(cons1(z0, z1)))
TOP(ok(cons1(z0, z1))) → c26(TOP(cons1(z0, active(z1))), ACTIVE(cons1(z0, z1)))
TOP(ok(x0)) → c26
S tuples:
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
K tuples:
ACTIVE(from(z0)) → c2(S(z0))
TOP(ok(z0)) → c26(TOP(active(z0)), ACTIVE(z0))
Defined Rule Symbols:
active, 2nd, cons, from, s, cons1, proper, top
Defined Pair Symbols:
2ND, CONS, FROM, S, CONS1, ACTIVE, PROPER, TOP
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c3, c4, c5, c6, c7, c8, c2, c1, c20, c21, c22, c23, c24, c25, c26, c26
(23) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
ACTIVE(2nd(z0)) → c3(2ND(active(z0)), ACTIVE(z0))
ACTIVE(cons(z0, z1)) → c4(CONS(active(z0), z1), ACTIVE(z0))
ACTIVE(from(z0)) → c5(FROM(active(z0)), ACTIVE(z0))
ACTIVE(s(z0)) → c6(S(active(z0)), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c7(CONS1(active(z0), z1), ACTIVE(z0))
ACTIVE(cons1(z0, z1)) → c8(CONS1(z0, active(z1)), ACTIVE(z1))
ACTIVE(from(z0)) → c2(S(z0))
ACTIVE(2nd(cons(z0, mark(z1)))) → c1(2ND(mark(cons1(z0, z1))), CONS1(z0, mark(z1)))
PROPER(2nd(z0)) → c20(2ND(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c21(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c22(FROM(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c23(S(proper(z0)), PROPER(z0))
PROPER(cons1(z0, z1)) → c24(CONS1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(2nd(z0))) → c25(TOP(2nd(proper(z0))), PROPER(2nd(z0)))
TOP(mark(cons(z0, z1))) → c25(TOP(cons(proper(z0), proper(z1))), PROPER(cons(z0, z1)))
TOP(mark(from(z0))) → c25(TOP(from(proper(z0))), PROPER(from(z0)))
TOP(mark(s(z0))) → c25(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(cons1(z0, z1))) → c25(TOP(cons1(proper(z0), proper(z1))), PROPER(cons1(z0, z1)))
TOP(ok(2nd(cons1(z0, cons(z1, z2))))) → c26(TOP(mark(z1)), ACTIVE(2nd(cons1(z0, cons(z1, z2)))))
TOP(ok(2nd(cons(z0, z1)))) → c26(TOP(mark(2nd(cons1(z0, z1)))), ACTIVE(2nd(cons(z0, z1))))
TOP(ok(from(z0))) → c26(TOP(mark(cons(z0, from(s(z0))))), ACTIVE(from(z0)))
TOP(ok(2nd(z0))) → c26(TOP(2nd(active(z0))), ACTIVE(2nd(z0)))
TOP(ok(cons(z0, z1))) → c26(TOP(cons(active(z0), z1)), ACTIVE(cons(z0, z1)))
TOP(ok(from(z0))) → c26(TOP(from(active(z0))), ACTIVE(from(z0)))
TOP(ok(s(z0))) → c26(TOP(s(active(z0))), ACTIVE(s(z0)))
TOP(ok(cons1(z0, z1))) → c26(TOP(cons1(active(z0), z1)), ACTIVE(cons1(z0, z1)))
TOP(ok(cons1(z0, z1))) → c26(TOP(cons1(z0, active(z1))), ACTIVE(cons1(z0, z1)))
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(2nd(cons1(z0, cons(z1, z2)))) → mark(z1)
active(2nd(cons(z0, z1))) → mark(2nd(cons1(z0, z1)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(2nd(z0)) → 2nd(active(z0))
active(cons(z0, z1)) → cons(active(z0), z1)
active(from(z0)) → from(active(z0))
active(s(z0)) → s(active(z0))
active(cons1(z0, z1)) → cons1(active(z0), z1)
active(cons1(z0, z1)) → cons1(z0, active(z1))
2nd(mark(z0)) → mark(2nd(z0))
2nd(ok(z0)) → ok(2nd(z0))
cons(mark(z0), z1) → mark(cons(z0, z1))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(mark(z0)) → mark(from(z0))
from(ok(z0)) → ok(from(z0))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
cons1(mark(z0), z1) → mark(cons1(z0, z1))
cons1(z0, mark(z1)) → mark(cons1(z0, z1))
cons1(ok(z0), ok(z1)) → ok(cons1(z0, z1))
proper(2nd(z0)) → 2nd(proper(z0))
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(s(z0)) → s(proper(z0))
proper(cons1(z0, z1)) → cons1(proper(z0), proper(z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
TOP(ok(x0)) → c26
S tuples:
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
K tuples:none
Defined Rule Symbols:
active, 2nd, cons, from, s, cons1, proper, top
Defined Pair Symbols:
2ND, CONS, FROM, S, CONS1, TOP
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c26
(25) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
TOP(ok(x0)) → c26
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(2nd(cons1(z0, cons(z1, z2)))) → mark(z1)
active(2nd(cons(z0, z1))) → mark(2nd(cons1(z0, z1)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(2nd(z0)) → 2nd(active(z0))
active(cons(z0, z1)) → cons(active(z0), z1)
active(from(z0)) → from(active(z0))
active(s(z0)) → s(active(z0))
active(cons1(z0, z1)) → cons1(active(z0), z1)
active(cons1(z0, z1)) → cons1(z0, active(z1))
2nd(mark(z0)) → mark(2nd(z0))
2nd(ok(z0)) → ok(2nd(z0))
cons(mark(z0), z1) → mark(cons(z0, z1))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(mark(z0)) → mark(from(z0))
from(ok(z0)) → ok(from(z0))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
cons1(mark(z0), z1) → mark(cons1(z0, z1))
cons1(z0, mark(z1)) → mark(cons1(z0, z1))
cons1(ok(z0), ok(z1)) → ok(cons1(z0, z1))
proper(2nd(z0)) → 2nd(proper(z0))
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(s(z0)) → s(proper(z0))
proper(cons1(z0, z1)) → cons1(proper(z0), proper(z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
S tuples:
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
K tuples:none
Defined Rule Symbols:
active, 2nd, cons, from, s, cons1, proper, top
Defined Pair Symbols:
2ND, CONS, FROM, S, CONS1
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19
(27) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
S(mark(z0)) → c15(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(2ND(x1)) = 0
POL(CONS(x1, x2)) = [2]x2
POL(CONS1(x1, x2)) = [3]x1
POL(FROM(x1)) = 0
POL(S(x1)) = [2]x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [2] + x1
POL(ok(x1)) = x1
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(2nd(cons1(z0, cons(z1, z2)))) → mark(z1)
active(2nd(cons(z0, z1))) → mark(2nd(cons1(z0, z1)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(2nd(z0)) → 2nd(active(z0))
active(cons(z0, z1)) → cons(active(z0), z1)
active(from(z0)) → from(active(z0))
active(s(z0)) → s(active(z0))
active(cons1(z0, z1)) → cons1(active(z0), z1)
active(cons1(z0, z1)) → cons1(z0, active(z1))
2nd(mark(z0)) → mark(2nd(z0))
2nd(ok(z0)) → ok(2nd(z0))
cons(mark(z0), z1) → mark(cons(z0, z1))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(mark(z0)) → mark(from(z0))
from(ok(z0)) → ok(from(z0))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
cons1(mark(z0), z1) → mark(cons1(z0, z1))
cons1(z0, mark(z1)) → mark(cons1(z0, z1))
cons1(ok(z0), ok(z1)) → ok(cons1(z0, z1))
proper(2nd(z0)) → 2nd(proper(z0))
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(s(z0)) → s(proper(z0))
proper(cons1(z0, z1)) → cons1(proper(z0), proper(z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
S tuples:
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(ok(z0)) → c16(S(z0))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
K tuples:
S(mark(z0)) → c15(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
Defined Rule Symbols:
active, 2nd, cons, from, s, cons1, proper, top
Defined Pair Symbols:
2ND, CONS, FROM, S, CONS1
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19
(29) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(ok(z0)) → c16(S(z0))
We considered the (Usable) Rules:none
And the Tuples:
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(2ND(x1)) = [4]x1
POL(CONS(x1, x2)) = [3]x1 + [4]x2
POL(CONS1(x1, x2)) = 0
POL(FROM(x1)) = [5]x1
POL(S(x1)) = [5]x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [4] + x1
POL(ok(x1)) = [5] + x1
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(2nd(cons1(z0, cons(z1, z2)))) → mark(z1)
active(2nd(cons(z0, z1))) → mark(2nd(cons1(z0, z1)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(2nd(z0)) → 2nd(active(z0))
active(cons(z0, z1)) → cons(active(z0), z1)
active(from(z0)) → from(active(z0))
active(s(z0)) → s(active(z0))
active(cons1(z0, z1)) → cons1(active(z0), z1)
active(cons1(z0, z1)) → cons1(z0, active(z1))
2nd(mark(z0)) → mark(2nd(z0))
2nd(ok(z0)) → ok(2nd(z0))
cons(mark(z0), z1) → mark(cons(z0, z1))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(mark(z0)) → mark(from(z0))
from(ok(z0)) → ok(from(z0))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
cons1(mark(z0), z1) → mark(cons1(z0, z1))
cons1(z0, mark(z1)) → mark(cons1(z0, z1))
cons1(ok(z0), ok(z1)) → ok(cons1(z0, z1))
proper(2nd(z0)) → 2nd(proper(z0))
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(s(z0)) → s(proper(z0))
proper(cons1(z0, z1)) → cons1(proper(z0), proper(z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
S tuples:
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
K tuples:
S(mark(z0)) → c15(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(ok(z0)) → c16(S(z0))
Defined Rule Symbols:
active, 2nd, cons, from, s, cons1, proper, top
Defined Pair Symbols:
2ND, CONS, FROM, S, CONS1
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19
(31) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(2ND(x1)) = 0
POL(CONS(x1, x2)) = [4]x2
POL(CONS1(x1, x2)) = x1
POL(FROM(x1)) = [4]x1
POL(S(x1)) = 0
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = [1] + x1
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(2nd(cons1(z0, cons(z1, z2)))) → mark(z1)
active(2nd(cons(z0, z1))) → mark(2nd(cons1(z0, z1)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(2nd(z0)) → 2nd(active(z0))
active(cons(z0, z1)) → cons(active(z0), z1)
active(from(z0)) → from(active(z0))
active(s(z0)) → s(active(z0))
active(cons1(z0, z1)) → cons1(active(z0), z1)
active(cons1(z0, z1)) → cons1(z0, active(z1))
2nd(mark(z0)) → mark(2nd(z0))
2nd(ok(z0)) → ok(2nd(z0))
cons(mark(z0), z1) → mark(cons(z0, z1))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(mark(z0)) → mark(from(z0))
from(ok(z0)) → ok(from(z0))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
cons1(mark(z0), z1) → mark(cons1(z0, z1))
cons1(z0, mark(z1)) → mark(cons1(z0, z1))
cons1(ok(z0), ok(z1)) → ok(cons1(z0, z1))
proper(2nd(z0)) → 2nd(proper(z0))
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(s(z0)) → s(proper(z0))
proper(cons1(z0, z1)) → cons1(proper(z0), proper(z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
S tuples:
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
K tuples:
S(mark(z0)) → c15(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(ok(z0)) → c16(S(z0))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
Defined Rule Symbols:
active, 2nd, cons, from, s, cons1, proper, top
Defined Pair Symbols:
2ND, CONS, FROM, S, CONS1
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19
(33) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(2ND(x1)) = x12
POL(CONS(x1, x2)) = [2]x1 + [3]x12
POL(CONS1(x1, x2)) = [3]x2 + x22
POL(FROM(x1)) = 0
POL(S(x1)) = [2]x12
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(2nd(cons1(z0, cons(z1, z2)))) → mark(z1)
active(2nd(cons(z0, z1))) → mark(2nd(cons1(z0, z1)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(2nd(z0)) → 2nd(active(z0))
active(cons(z0, z1)) → cons(active(z0), z1)
active(from(z0)) → from(active(z0))
active(s(z0)) → s(active(z0))
active(cons1(z0, z1)) → cons1(active(z0), z1)
active(cons1(z0, z1)) → cons1(z0, active(z1))
2nd(mark(z0)) → mark(2nd(z0))
2nd(ok(z0)) → ok(2nd(z0))
cons(mark(z0), z1) → mark(cons(z0, z1))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(mark(z0)) → mark(from(z0))
from(ok(z0)) → ok(from(z0))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
cons1(mark(z0), z1) → mark(cons1(z0, z1))
cons1(z0, mark(z1)) → mark(cons1(z0, z1))
cons1(ok(z0), ok(z1)) → ok(cons1(z0, z1))
proper(2nd(z0)) → 2nd(proper(z0))
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(s(z0)) → s(proper(z0))
proper(cons1(z0, z1)) → cons1(proper(z0), proper(z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(mark(z0)) → c15(S(z0))
S(ok(z0)) → c16(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
S tuples:none
K tuples:
S(mark(z0)) → c15(S(z0))
CONS1(mark(z0), z1) → c17(CONS1(z0, z1))
2ND(mark(z0)) → c9(2ND(z0))
2ND(ok(z0)) → c10(2ND(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
CONS(ok(z0), ok(z1)) → c12(CONS(z0, z1))
FROM(mark(z0)) → c13(FROM(z0))
FROM(ok(z0)) → c14(FROM(z0))
S(ok(z0)) → c16(S(z0))
CONS1(ok(z0), ok(z1)) → c19(CONS1(z0, z1))
CONS1(z0, mark(z1)) → c18(CONS1(z0, z1))
Defined Rule Symbols:
active, 2nd, cons, from, s, cons1, proper, top
Defined Pair Symbols:
2ND, CONS, FROM, S, CONS1
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19
(35) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(36) BOUNDS(O(1), O(1))