We consider the following Problem:

  Strict Trs:
    {  active(f(X)) -> mark(if(X, c(), f(true())))
     , active(if(true(), X, Y)) -> mark(X)
     , active(if(false(), X, Y)) -> mark(Y)
     , mark(f(X)) -> active(f(mark(X)))
     , mark(if(X1, X2, X3)) -> active(if(mark(X1), mark(X2), X3))
     , mark(c()) -> active(c())
     , mark(true()) -> active(true())
     , mark(false()) -> active(false())
     , f(mark(X)) -> f(X)
     , f(active(X)) -> f(X)
     , if(mark(X1), X2, X3) -> if(X1, X2, X3)
     , if(X1, mark(X2), X3) -> if(X1, X2, X3)
     , if(X1, X2, mark(X3)) -> if(X1, X2, X3)
     , if(active(X1), X2, X3) -> if(X1, X2, X3)
     , if(X1, active(X2), X3) -> if(X1, X2, X3)
     , if(X1, X2, active(X3)) -> if(X1, X2, X3)}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  We consider the following Problem:
  
    Strict Trs:
      {  active(f(X)) -> mark(if(X, c(), f(true())))
       , active(if(true(), X, Y)) -> mark(X)
       , active(if(false(), X, Y)) -> mark(Y)
       , mark(f(X)) -> active(f(mark(X)))
       , mark(if(X1, X2, X3)) -> active(if(mark(X1), mark(X2), X3))
       , mark(c()) -> active(c())
       , mark(true()) -> active(true())
       , mark(false()) -> active(false())
       , f(mark(X)) -> f(X)
       , f(active(X)) -> f(X)
       , if(mark(X1), X2, X3) -> if(X1, X2, X3)
       , if(X1, mark(X2), X3) -> if(X1, X2, X3)
       , if(X1, X2, mark(X3)) -> if(X1, X2, X3)
       , if(active(X1), X2, X3) -> if(X1, X2, X3)
       , if(X1, active(X2), X3) -> if(X1, X2, X3)
       , if(X1, X2, active(X3)) -> if(X1, X2, X3)}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component:
      {  f(mark(X)) -> f(X)
       , f(active(X)) -> f(X)
       , if(mark(X1), X2, X3) -> if(X1, X2, X3)
       , if(active(X1), X2, X3) -> if(X1, X2, X3)}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(active) = {1}, Uargs(f) = {1}, Uargs(mark) = {1},
        Uargs(if) = {1, 2}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       active(x1) = [1 0] x1 + [1]
                    [1 0]      [1]
       f(x1) = [1 0] x1 + [0]
               [0 0]      [1]
       mark(x1) = [1 0] x1 + [1]
                  [1 0]      [1]
       if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [0 0] x3 + [0]
                        [0 0]      [0 1]      [0 0]      [3]
       c() = [0]
             [0]
       true() = [0]
                [0]
       false() = [0]
                 [0]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  active(f(X)) -> mark(if(X, c(), f(true())))
         , active(if(true(), X, Y)) -> mark(X)
         , active(if(false(), X, Y)) -> mark(Y)
         , mark(f(X)) -> active(f(mark(X)))
         , mark(if(X1, X2, X3)) -> active(if(mark(X1), mark(X2), X3))
         , mark(c()) -> active(c())
         , mark(true()) -> active(true())
         , mark(false()) -> active(false())
         , if(X1, mark(X2), X3) -> if(X1, X2, X3)
         , if(X1, X2, mark(X3)) -> if(X1, X2, X3)
         , if(X1, active(X2), X3) -> if(X1, X2, X3)
         , if(X1, X2, active(X3)) -> if(X1, X2, X3)}
      Weak Trs:
        {  f(mark(X)) -> f(X)
         , f(active(X)) -> f(X)
         , if(mark(X1), X2, X3) -> if(X1, X2, X3)
         , if(active(X1), X2, X3) -> if(X1, X2, X3)}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component:
        {  if(X1, mark(X2), X3) -> if(X1, X2, X3)
         , if(X1, active(X2), X3) -> if(X1, X2, X3)}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(active) = {1}, Uargs(f) = {1}, Uargs(mark) = {1},
          Uargs(if) = {1, 2}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         active(x1) = [1 0] x1 + [1]
                      [1 0]      [1]
         f(x1) = [1 0] x1 + [0]
                 [0 0]      [1]
         mark(x1) = [1 0] x1 + [1]
                    [1 0]      [1]
         if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [0 0] x3 + [0]
                          [0 0]      [0 0]      [0 0]      [1]
         c() = [0]
               [0]
         true() = [0]
                  [0]
         false() = [0]
                   [0]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  active(f(X)) -> mark(if(X, c(), f(true())))
           , active(if(true(), X, Y)) -> mark(X)
           , active(if(false(), X, Y)) -> mark(Y)
           , mark(f(X)) -> active(f(mark(X)))
           , mark(if(X1, X2, X3)) -> active(if(mark(X1), mark(X2), X3))
           , mark(c()) -> active(c())
           , mark(true()) -> active(true())
           , mark(false()) -> active(false())
           , if(X1, X2, mark(X3)) -> if(X1, X2, X3)
           , if(X1, X2, active(X3)) -> if(X1, X2, X3)}
        Weak Trs:
          {  if(X1, mark(X2), X3) -> if(X1, X2, X3)
           , if(X1, active(X2), X3) -> if(X1, X2, X3)
           , f(mark(X)) -> f(X)
           , f(active(X)) -> f(X)
           , if(mark(X1), X2, X3) -> if(X1, X2, X3)
           , if(active(X1), X2, X3) -> if(X1, X2, X3)}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component: {active(if(true(), X, Y)) -> mark(X)}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(active) = {1}, Uargs(f) = {1}, Uargs(mark) = {1},
            Uargs(if) = {1, 2}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           active(x1) = [1 0] x1 + [1]
                        [1 0]      [1]
           f(x1) = [1 0] x1 + [0]
                   [0 0]      [0]
           mark(x1) = [1 0] x1 + [1]
                      [1 0]      [1]
           if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [0 0] x3 + [0]
                            [0 0]      [0 0]      [0 0]      [1]
           c() = [0]
                 [0]
           true() = [2]
                    [0]
           false() = [0]
                     [0]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  active(f(X)) -> mark(if(X, c(), f(true())))
             , active(if(false(), X, Y)) -> mark(Y)
             , mark(f(X)) -> active(f(mark(X)))
             , mark(if(X1, X2, X3)) -> active(if(mark(X1), mark(X2), X3))
             , mark(c()) -> active(c())
             , mark(true()) -> active(true())
             , mark(false()) -> active(false())
             , if(X1, X2, mark(X3)) -> if(X1, X2, X3)
             , if(X1, X2, active(X3)) -> if(X1, X2, X3)}
          Weak Trs:
            {  active(if(true(), X, Y)) -> mark(X)
             , if(X1, mark(X2), X3) -> if(X1, X2, X3)
             , if(X1, active(X2), X3) -> if(X1, X2, X3)
             , f(mark(X)) -> f(X)
             , f(active(X)) -> f(X)
             , if(mark(X1), X2, X3) -> if(X1, X2, X3)
             , if(active(X1), X2, X3) -> if(X1, X2, X3)}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component:
            {  mark(c()) -> active(c())
             , mark(false()) -> active(false())}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            The following argument positions are usable:
              Uargs(active) = {1}, Uargs(f) = {1}, Uargs(mark) = {1},
              Uargs(if) = {1, 2}
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             active(x1) = [1 0] x1 + [1]
                          [1 0]      [0]
             f(x1) = [1 0] x1 + [0]
                     [0 0]      [1]
             mark(x1) = [1 0] x1 + [3]
                        [0 0]      [0]
             if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [0 0] x3 + [0]
                              [0 0]      [0 0]      [0 0]      [1]
             c() = [0]
                   [0]
             true() = [2]
                      [0]
             false() = [0]
                       [0]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Strict Trs:
              {  active(f(X)) -> mark(if(X, c(), f(true())))
               , active(if(false(), X, Y)) -> mark(Y)
               , mark(f(X)) -> active(f(mark(X)))
               , mark(if(X1, X2, X3)) -> active(if(mark(X1), mark(X2), X3))
               , mark(true()) -> active(true())
               , if(X1, X2, mark(X3)) -> if(X1, X2, X3)
               , if(X1, X2, active(X3)) -> if(X1, X2, X3)}
            Weak Trs:
              {  mark(c()) -> active(c())
               , mark(false()) -> active(false())
               , active(if(true(), X, Y)) -> mark(X)
               , if(X1, mark(X2), X3) -> if(X1, X2, X3)
               , if(X1, active(X2), X3) -> if(X1, X2, X3)
               , f(mark(X)) -> f(X)
               , f(active(X)) -> f(X)
               , if(mark(X1), X2, X3) -> if(X1, X2, X3)
               , if(active(X1), X2, X3) -> if(X1, X2, X3)}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            The weightgap principle applies, where following rules are oriented strictly:
            
            TRS Component: {active(f(X)) -> mark(if(X, c(), f(true())))}
            
            Interpretation of nonconstant growth:
            -------------------------------------
              The following argument positions are usable:
                Uargs(active) = {1}, Uargs(f) = {1}, Uargs(mark) = {1},
                Uargs(if) = {1, 2}
              We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
              Interpretation Functions:
               active(x1) = [1 0] x1 + [1]
                            [1 0]      [0]
               f(x1) = [1 0] x1 + [2]
                       [0 0]      [1]
               mark(x1) = [1 0] x1 + [1]
                          [1 0]      [0]
               if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [1]
               c() = [0]
                     [0]
               true() = [0]
                        [0]
               false() = [1]
                         [0]
            
            The strictly oriented rules are moved into the weak component.
            
            We consider the following Problem:
            
              Strict Trs:
                {  active(if(false(), X, Y)) -> mark(Y)
                 , mark(f(X)) -> active(f(mark(X)))
                 , mark(if(X1, X2, X3)) -> active(if(mark(X1), mark(X2), X3))
                 , mark(true()) -> active(true())
                 , if(X1, X2, mark(X3)) -> if(X1, X2, X3)
                 , if(X1, X2, active(X3)) -> if(X1, X2, X3)}
              Weak Trs:
                {  active(f(X)) -> mark(if(X, c(), f(true())))
                 , mark(c()) -> active(c())
                 , mark(false()) -> active(false())
                 , active(if(true(), X, Y)) -> mark(X)
                 , if(X1, mark(X2), X3) -> if(X1, X2, X3)
                 , if(X1, active(X2), X3) -> if(X1, X2, X3)
                 , f(mark(X)) -> f(X)
                 , f(active(X)) -> f(X)
                 , if(mark(X1), X2, X3) -> if(X1, X2, X3)
                 , if(active(X1), X2, X3) -> if(X1, X2, X3)}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(?,O(n^1))
            
            Proof:
              The weightgap principle applies, where following rules are oriented strictly:
              
              TRS Component: {mark(true()) -> active(true())}
              
              Interpretation of nonconstant growth:
              -------------------------------------
                The following argument positions are usable:
                  Uargs(active) = {1}, Uargs(f) = {1}, Uargs(mark) = {1},
                  Uargs(if) = {1, 2}
                We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                Interpretation Functions:
                 active(x1) = [1 0] x1 + [1]
                              [0 0]      [1]
                 f(x1) = [1 0] x1 + [2]
                         [0 0]      [1]
                 mark(x1) = [1 0] x1 + [2]
                            [0 0]      [1]
                 if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [1 0]      [0 0]      [1]
                 c() = [0]
                       [0]
                 true() = [1]
                          [0]
                 false() = [0]
                           [0]
              
              The strictly oriented rules are moved into the weak component.
              
              We consider the following Problem:
              
                Strict Trs:
                  {  active(if(false(), X, Y)) -> mark(Y)
                   , mark(f(X)) -> active(f(mark(X)))
                   , mark(if(X1, X2, X3)) -> active(if(mark(X1), mark(X2), X3))
                   , if(X1, X2, mark(X3)) -> if(X1, X2, X3)
                   , if(X1, X2, active(X3)) -> if(X1, X2, X3)}
                Weak Trs:
                  {  mark(true()) -> active(true())
                   , active(f(X)) -> mark(if(X, c(), f(true())))
                   , mark(c()) -> active(c())
                   , mark(false()) -> active(false())
                   , active(if(true(), X, Y)) -> mark(X)
                   , if(X1, mark(X2), X3) -> if(X1, X2, X3)
                   , if(X1, active(X2), X3) -> if(X1, X2, X3)
                   , f(mark(X)) -> f(X)
                   , f(active(X)) -> f(X)
                   , if(mark(X1), X2, X3) -> if(X1, X2, X3)
                   , if(active(X1), X2, X3) -> if(X1, X2, X3)}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(?,O(n^1))
              
              Proof:
                The weightgap principle applies, where following rules are oriented strictly:
                
                TRS Component: {active(if(false(), X, Y)) -> mark(Y)}
                
                Interpretation of nonconstant growth:
                -------------------------------------
                  The following argument positions are usable:
                    Uargs(active) = {1}, Uargs(f) = {1}, Uargs(mark) = {1},
                    Uargs(if) = {1, 2}
                  We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                  Interpretation Functions:
                   active(x1) = [1 0] x1 + [0]
                                [1 0]      [1]
                   f(x1) = [1 0] x1 + [0]
                           [0 0]      [1]
                   mark(x1) = [1 0] x1 + [0]
                              [1 0]      [1]
                   if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [0]
                                    [1 0]      [0 0]      [0 0]      [1]
                   c() = [0]
                         [0]
                   true() = [0]
                            [0]
                   false() = [2]
                             [0]
                
                The strictly oriented rules are moved into the weak component.
                
                We consider the following Problem:
                
                  Strict Trs:
                    {  mark(f(X)) -> active(f(mark(X)))
                     , mark(if(X1, X2, X3)) -> active(if(mark(X1), mark(X2), X3))
                     , if(X1, X2, mark(X3)) -> if(X1, X2, X3)
                     , if(X1, X2, active(X3)) -> if(X1, X2, X3)}
                  Weak Trs:
                    {  active(if(false(), X, Y)) -> mark(Y)
                     , mark(true()) -> active(true())
                     , active(f(X)) -> mark(if(X, c(), f(true())))
                     , mark(c()) -> active(c())
                     , mark(false()) -> active(false())
                     , active(if(true(), X, Y)) -> mark(X)
                     , if(X1, mark(X2), X3) -> if(X1, X2, X3)
                     , if(X1, active(X2), X3) -> if(X1, X2, X3)
                     , f(mark(X)) -> f(X)
                     , f(active(X)) -> f(X)
                     , if(mark(X1), X2, X3) -> if(X1, X2, X3)
                     , if(active(X1), X2, X3) -> if(X1, X2, X3)}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(?,O(n^1))
                
                Proof:
                  The weightgap principle applies, where following rules are oriented strictly:
                  
                  TRS Component:
                    {  if(X1, X2, mark(X3)) -> if(X1, X2, X3)
                     , if(X1, X2, active(X3)) -> if(X1, X2, X3)}
                  
                  Interpretation of nonconstant growth:
                  -------------------------------------
                    The following argument positions are usable:
                      Uargs(active) = {1}, Uargs(f) = {1}, Uargs(mark) = {1},
                      Uargs(if) = {1, 2}
                    We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                    Interpretation Functions:
                     active(x1) = [1 0] x1 + [1]
                                  [1 0]      [0]
                     f(x1) = [1 0] x1 + [0]
                             [0 0]      [1]
                     mark(x1) = [1 0] x1 + [1]
                                [1 0]      [0]
                     if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [0]
                                      [0 0]      [0 0]      [1 0]      [0]
                     c() = [0]
                           [0]
                     true() = [0]
                              [0]
                     false() = [0]
                               [0]
                  
                  The strictly oriented rules are moved into the weak component.
                  
                  We consider the following Problem:
                  
                    Strict Trs:
                      {  mark(f(X)) -> active(f(mark(X)))
                       , mark(if(X1, X2, X3)) -> active(if(mark(X1), mark(X2), X3))}
                    Weak Trs:
                      {  if(X1, X2, mark(X3)) -> if(X1, X2, X3)
                       , if(X1, X2, active(X3)) -> if(X1, X2, X3)
                       , active(if(false(), X, Y)) -> mark(Y)
                       , mark(true()) -> active(true())
                       , active(f(X)) -> mark(if(X, c(), f(true())))
                       , mark(c()) -> active(c())
                       , mark(false()) -> active(false())
                       , active(if(true(), X, Y)) -> mark(X)
                       , if(X1, mark(X2), X3) -> if(X1, X2, X3)
                       , if(X1, active(X2), X3) -> if(X1, X2, X3)
                       , f(mark(X)) -> f(X)
                       , f(active(X)) -> f(X)
                       , if(mark(X1), X2, X3) -> if(X1, X2, X3)
                       , if(active(X1), X2, X3) -> if(X1, X2, X3)}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(?,O(n^1))
                  
                  Proof:
                    We consider the following Problem:
                    
                      Strict Trs:
                        {  mark(f(X)) -> active(f(mark(X)))
                         , mark(if(X1, X2, X3)) -> active(if(mark(X1), mark(X2), X3))}
                      Weak Trs:
                        {  if(X1, X2, mark(X3)) -> if(X1, X2, X3)
                         , if(X1, X2, active(X3)) -> if(X1, X2, X3)
                         , active(if(false(), X, Y)) -> mark(Y)
                         , mark(true()) -> active(true())
                         , active(f(X)) -> mark(if(X, c(), f(true())))
                         , mark(c()) -> active(c())
                         , mark(false()) -> active(false())
                         , active(if(true(), X, Y)) -> mark(X)
                         , if(X1, mark(X2), X3) -> if(X1, X2, X3)
                         , if(X1, active(X2), X3) -> if(X1, X2, X3)
                         , f(mark(X)) -> f(X)
                         , f(active(X)) -> f(X)
                         , if(mark(X1), X2, X3) -> if(X1, X2, X3)
                         , if(active(X1), X2, X3) -> if(X1, X2, X3)}
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(?,O(n^1))
                    
                    Proof:
                      The problem is match-bounded by 0.
                      The enriched problem is compatible with the following automaton:
                      {  active_0(2) -> 1
                       , f_0(2) -> 1
                       , mark_0(2) -> 1
                       , if_0(2, 2, 2) -> 1
                       , c_0() -> 2
                       , true_0() -> 2
                       , false_0() -> 2}

Hurray, we answered YES(?,O(n^1))