We consider the following Problem: Strict Trs: { f(X) -> if(X, c(), n__f(true())) , if(true(), X, Y) -> X , if(false(), X, Y) -> activate(Y) , f(X) -> n__f(X) , activate(n__f(X)) -> f(X) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { f(X) -> if(X, c(), n__f(true())) , if(true(), X, Y) -> X , if(false(), X, Y) -> activate(Y) , f(X) -> n__f(X) , activate(n__f(X)) -> f(X) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { f(X) -> if(X, c(), n__f(true())) , f(X) -> n__f(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {}, Uargs(if) = {}, Uargs(n__f) = {}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [0 0] x1 + [2] [0 0] [2] if(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [0 0] x3 + [1] [0 0] [0 0] [0 0] [1] c() = [0] [0] n__f(x1) = [0 0] x1 + [0] [0 0] [0] true() = [0] [0] false() = [0] [0] activate(x1) = [1 0] x1 + [1] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { if(true(), X, Y) -> X , if(false(), X, Y) -> activate(Y) , activate(n__f(X)) -> f(X) , activate(X) -> X} Weak Trs: { f(X) -> if(X, c(), n__f(true())) , f(X) -> n__f(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {if(true(), X, Y) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {}, Uargs(if) = {}, Uargs(n__f) = {}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [0 0] x1 + [2] [0 0] [2] if(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [0 0] x3 + [1] [0 0] [0 1] [0 0] [1] c() = [0] [1] n__f(x1) = [0 0] x1 + [0] [0 0] [0] true() = [0] [0] false() = [0] [0] activate(x1) = [1 0] x1 + [1] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { if(false(), X, Y) -> activate(Y) , activate(n__f(X)) -> f(X) , activate(X) -> X} Weak Trs: { if(true(), X, Y) -> X , f(X) -> if(X, c(), n__f(true())) , f(X) -> n__f(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(n__f(X)) -> f(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {}, Uargs(if) = {}, Uargs(n__f) = {}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [0 0] x1 + [1] [0 0] [1] if(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [0 0] x3 + [1] [0 0] [0 1] [0 0] [1] c() = [0] [0] n__f(x1) = [0 0] x1 + [0] [0 0] [0] true() = [0] [0] false() = [0] [0] activate(x1) = [1 0] x1 + [3] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { if(false(), X, Y) -> activate(Y) , activate(X) -> X} Weak Trs: { activate(n__f(X)) -> f(X) , if(true(), X, Y) -> X , f(X) -> if(X, c(), n__f(true())) , f(X) -> n__f(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {if(false(), X, Y) -> activate(Y)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {}, Uargs(if) = {}, Uargs(n__f) = {}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [1 0] x1 + [0] [0 0] [1] if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [0] [0 0] [0 1] [0 0] [1] c() = [0] [0] n__f(x1) = [1 0] x1 + [0] [0 0] [0] true() = [0] [0] false() = [1] [0] activate(x1) = [1 0] x1 + [0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {activate(X) -> X} Weak Trs: { if(false(), X, Y) -> activate(Y) , activate(n__f(X)) -> f(X) , if(true(), X, Y) -> X , f(X) -> if(X, c(), n__f(true())) , f(X) -> n__f(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(X) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {}, Uargs(if) = {}, Uargs(n__f) = {}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [0 0] x1 + [1] [0 0] [1] if(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [1] [0 0] [0 1] [0 1] [1] c() = [0] [0] n__f(x1) = [0 0] x1 + [0] [0 0] [0] true() = [0] [0] false() = [0] [0] activate(x1) = [1 0] x1 + [1] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Weak Trs: { activate(X) -> X , if(false(), X, Y) -> activate(Y) , activate(n__f(X)) -> f(X) , if(true(), X, Y) -> X , f(X) -> if(X, c(), n__f(true())) , f(X) -> n__f(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(X) -> X , if(false(), X, Y) -> activate(Y) , activate(n__f(X)) -> f(X) , if(true(), X, Y) -> X , f(X) -> if(X, c(), n__f(true())) , f(X) -> n__f(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))