We consider the following Problem:

  Strict Trs:
    {  pairNs() -> cons(0(), n__incr(n__oddNs()))
     , oddNs() -> incr(pairNs())
     , incr(cons(X, XS)) -> cons(s(X), n__incr(activate(XS)))
     , take(0(), XS) -> nil()
     , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))
     , zip(nil(), XS) -> nil()
     , zip(X, nil()) -> nil()
     , zip(cons(X, XS), cons(Y, YS)) ->
       cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
     , tail(cons(X, XS)) -> activate(XS)
     , repItems(nil()) -> nil()
     , repItems(cons(X, XS)) ->
       cons(X, n__cons(X, n__repItems(activate(XS))))
     , incr(X) -> n__incr(X)
     , oddNs() -> n__oddNs()
     , take(X1, X2) -> n__take(X1, X2)
     , zip(X1, X2) -> n__zip(X1, X2)
     , cons(X1, X2) -> n__cons(X1, X2)
     , repItems(X) -> n__repItems(X)
     , activate(n__incr(X)) -> incr(activate(X))
     , activate(n__oddNs()) -> oddNs()
     , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
     , activate(n__zip(X1, X2)) -> zip(activate(X1), activate(X2))
     , activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
     , activate(n__repItems(X)) -> repItems(activate(X))
     , activate(X) -> X}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  Arguments of following rules are not normal-forms:
  {  incr(cons(X, XS)) -> cons(s(X), n__incr(activate(XS)))
   , take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS)))
   , zip(cons(X, XS), cons(Y, YS)) ->
     cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
   , tail(cons(X, XS)) -> activate(XS)
   , repItems(cons(X, XS)) ->
     cons(X, n__cons(X, n__repItems(activate(XS))))}
  
  All above mentioned rules can be savely removed.
  
  We consider the following Problem:
  
    Strict Trs:
      {  pairNs() -> cons(0(), n__incr(n__oddNs()))
       , oddNs() -> incr(pairNs())
       , take(0(), XS) -> nil()
       , zip(nil(), XS) -> nil()
       , zip(X, nil()) -> nil()
       , repItems(nil()) -> nil()
       , incr(X) -> n__incr(X)
       , oddNs() -> n__oddNs()
       , take(X1, X2) -> n__take(X1, X2)
       , zip(X1, X2) -> n__zip(X1, X2)
       , cons(X1, X2) -> n__cons(X1, X2)
       , repItems(X) -> n__repItems(X)
       , activate(n__incr(X)) -> incr(activate(X))
       , activate(n__oddNs()) -> oddNs()
       , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
       , activate(n__zip(X1, X2)) -> zip(activate(X1), activate(X2))
       , activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
       , activate(n__repItems(X)) -> repItems(activate(X))
       , activate(X) -> X}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component:
      {  oddNs() -> incr(pairNs())
       , take(0(), XS) -> nil()
       , zip(nil(), XS) -> nil()
       , zip(X, nil()) -> nil()
       , repItems(nil()) -> nil()
       , incr(X) -> n__incr(X)
       , oddNs() -> n__oddNs()
       , take(X1, X2) -> n__take(X1, X2)
       , zip(X1, X2) -> n__zip(X1, X2)
       , cons(X1, X2) -> n__cons(X1, X2)
       , repItems(X) -> n__repItems(X)
       , activate(X) -> X}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(cons) = {1}, Uargs(n__incr) = {}, Uargs(incr) = {1},
        Uargs(s) = {}, Uargs(activate) = {}, Uargs(take) = {1, 2},
        Uargs(n__take) = {}, Uargs(zip) = {1, 2}, Uargs(pair) = {},
        Uargs(n__zip) = {}, Uargs(tail) = {}, Uargs(repItems) = {1},
        Uargs(n__cons) = {}, Uargs(n__repItems) = {}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       pairNs() = [0]
                  [0]
       cons(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                      [0 0]      [0 0]      [1]
       0() = [0]
             [0]
       n__incr(x1) = [1 0] x1 + [0]
                     [0 0]      [0]
       n__oddNs() = [0]
                    [0]
       oddNs() = [2]
                 [2]
       incr(x1) = [1 0] x1 + [1]
                  [0 0]      [1]
       s(x1) = [1 0] x1 + [0]
               [0 1]      [0]
       activate(x1) = [1 0] x1 + [1]
                      [0 1]      [1]
       take(x1, x2) = [1 1] x1 + [1 0] x2 + [1]
                      [0 0]      [0 0]      [1]
       nil() = [0]
               [0]
       n__take(x1, x2) = [1 1] x1 + [1 0] x2 + [0]
                         [0 0]      [0 0]      [0]
       zip(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                     [0 0]      [0 0]      [1]
       pair(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                      [0 0]      [0 0]      [0]
       n__zip(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                        [0 0]      [0 0]      [0]
       tail(x1) = [0 0] x1 + [0]
                  [0 0]      [0]
       repItems(x1) = [1 0] x1 + [1]
                      [0 0]      [1]
       n__cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                         [0 0]      [0 0]      [0]
       n__repItems(x1) = [1 0] x1 + [0]
                         [0 0]      [0]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  pairNs() -> cons(0(), n__incr(n__oddNs()))
         , activate(n__incr(X)) -> incr(activate(X))
         , activate(n__oddNs()) -> oddNs()
         , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
         , activate(n__zip(X1, X2)) -> zip(activate(X1), activate(X2))
         , activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
         , activate(n__repItems(X)) -> repItems(activate(X))}
      Weak Trs:
        {  oddNs() -> incr(pairNs())
         , take(0(), XS) -> nil()
         , zip(nil(), XS) -> nil()
         , zip(X, nil()) -> nil()
         , repItems(nil()) -> nil()
         , incr(X) -> n__incr(X)
         , oddNs() -> n__oddNs()
         , take(X1, X2) -> n__take(X1, X2)
         , zip(X1, X2) -> n__zip(X1, X2)
         , cons(X1, X2) -> n__cons(X1, X2)
         , repItems(X) -> n__repItems(X)
         , activate(X) -> X}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component: {activate(n__oddNs()) -> oddNs()}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(cons) = {1}, Uargs(n__incr) = {}, Uargs(incr) = {1},
          Uargs(s) = {}, Uargs(activate) = {}, Uargs(take) = {1, 2},
          Uargs(n__take) = {}, Uargs(zip) = {1, 2}, Uargs(pair) = {},
          Uargs(n__zip) = {}, Uargs(tail) = {}, Uargs(repItems) = {1},
          Uargs(n__cons) = {}, Uargs(n__repItems) = {}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         pairNs() = [0]
                    [0]
         cons(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                        [0 0]      [0 0]      [1]
         0() = [0]
               [0]
         n__incr(x1) = [1 0] x1 + [0]
                       [0 0]      [0]
         n__oddNs() = [0]
                      [0]
         oddNs() = [0]
                   [1]
         incr(x1) = [1 0] x1 + [0]
                    [0 0]      [1]
         s(x1) = [1 0] x1 + [0]
                 [0 1]      [0]
         activate(x1) = [1 0] x1 + [1]
                        [0 1]      [1]
         take(x1, x2) = [1 1] x1 + [1 0] x2 + [0]
                        [0 0]      [0 0]      [1]
         nil() = [0]
                 [0]
         n__take(x1, x2) = [1 1] x1 + [1 0] x2 + [0]
                           [0 0]      [0 0]      [0]
         zip(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                       [0 0]      [0 0]      [1]
         pair(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                        [0 0]      [0 0]      [0]
         n__zip(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                          [0 0]      [0 0]      [0]
         tail(x1) = [0 0] x1 + [0]
                    [0 0]      [0]
         repItems(x1) = [1 0] x1 + [0]
                        [0 0]      [1]
         n__cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                           [0 0]      [0 0]      [0]
         n__repItems(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  pairNs() -> cons(0(), n__incr(n__oddNs()))
           , activate(n__incr(X)) -> incr(activate(X))
           , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
           , activate(n__zip(X1, X2)) -> zip(activate(X1), activate(X2))
           , activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
           , activate(n__repItems(X)) -> repItems(activate(X))}
        Weak Trs:
          {  activate(n__oddNs()) -> oddNs()
           , oddNs() -> incr(pairNs())
           , take(0(), XS) -> nil()
           , zip(nil(), XS) -> nil()
           , zip(X, nil()) -> nil()
           , repItems(nil()) -> nil()
           , incr(X) -> n__incr(X)
           , oddNs() -> n__oddNs()
           , take(X1, X2) -> n__take(X1, X2)
           , zip(X1, X2) -> n__zip(X1, X2)
           , cons(X1, X2) -> n__cons(X1, X2)
           , repItems(X) -> n__repItems(X)
           , activate(X) -> X}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component: {pairNs() -> cons(0(), n__incr(n__oddNs()))}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(cons) = {1}, Uargs(n__incr) = {}, Uargs(incr) = {1},
            Uargs(s) = {}, Uargs(activate) = {}, Uargs(take) = {1, 2},
            Uargs(n__take) = {}, Uargs(zip) = {1, 2}, Uargs(pair) = {},
            Uargs(n__zip) = {}, Uargs(tail) = {}, Uargs(repItems) = {1},
            Uargs(n__cons) = {}, Uargs(n__repItems) = {}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           pairNs() = [2]
                      [2]
           cons(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                          [0 0]      [0 0]      [1]
           0() = [0]
                 [0]
           n__incr(x1) = [1 0] x1 + [0]
                         [0 0]      [0]
           n__oddNs() = [2]
                        [0]
           oddNs() = [2]
                     [1]
           incr(x1) = [1 0] x1 + [0]
                      [0 0]      [1]
           s(x1) = [1 0] x1 + [0]
                   [0 1]      [0]
           activate(x1) = [1 0] x1 + [1]
                          [0 1]      [1]
           take(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                          [0 0]      [0 0]      [1]
           nil() = [0]
                   [0]
           n__take(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                             [0 0]      [0 0]      [0]
           zip(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                         [0 0]      [0 0]      [1]
           pair(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                          [0 0]      [0 0]      [0]
           n__zip(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                            [0 0]      [0 0]      [0]
           tail(x1) = [0 0] x1 + [0]
                      [0 0]      [0]
           repItems(x1) = [1 0] x1 + [0]
                          [0 0]      [1]
           n__cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
           n__repItems(x1) = [1 0] x1 + [0]
                             [0 0]      [0]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  activate(n__incr(X)) -> incr(activate(X))
             , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
             , activate(n__zip(X1, X2)) -> zip(activate(X1), activate(X2))
             , activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
             , activate(n__repItems(X)) -> repItems(activate(X))}
          Weak Trs:
            {  pairNs() -> cons(0(), n__incr(n__oddNs()))
             , activate(n__oddNs()) -> oddNs()
             , oddNs() -> incr(pairNs())
             , take(0(), XS) -> nil()
             , zip(nil(), XS) -> nil()
             , zip(X, nil()) -> nil()
             , repItems(nil()) -> nil()
             , incr(X) -> n__incr(X)
             , oddNs() -> n__oddNs()
             , take(X1, X2) -> n__take(X1, X2)
             , zip(X1, X2) -> n__zip(X1, X2)
             , cons(X1, X2) -> n__cons(X1, X2)
             , repItems(X) -> n__repItems(X)
             , activate(X) -> X}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          We consider the following Problem:
          
            Strict Trs:
              {  activate(n__incr(X)) -> incr(activate(X))
               , activate(n__take(X1, X2)) -> take(activate(X1), activate(X2))
               , activate(n__zip(X1, X2)) -> zip(activate(X1), activate(X2))
               , activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
               , activate(n__repItems(X)) -> repItems(activate(X))}
            Weak Trs:
              {  pairNs() -> cons(0(), n__incr(n__oddNs()))
               , activate(n__oddNs()) -> oddNs()
               , oddNs() -> incr(pairNs())
               , take(0(), XS) -> nil()
               , zip(nil(), XS) -> nil()
               , zip(X, nil()) -> nil()
               , repItems(nil()) -> nil()
               , incr(X) -> n__incr(X)
               , oddNs() -> n__oddNs()
               , take(X1, X2) -> n__take(X1, X2)
               , zip(X1, X2) -> n__zip(X1, X2)
               , cons(X1, X2) -> n__cons(X1, X2)
               , repItems(X) -> n__repItems(X)
               , activate(X) -> X}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            The problem is match-bounded by 2.
            The enriched problem is compatible with the following automaton:
            {  pairNs_0() -> 1
             , pairNs_1() -> 3
             , pairNs_2() -> 5
             , cons_0(2, 2) -> 1
             , cons_1(3, 2) -> 1
             , cons_1(3, 2) -> 3
             , cons_2(6, 7) -> 3
             , cons_2(6, 7) -> 5
             , 0_0() -> 1
             , 0_0() -> 2
             , 0_0() -> 3
             , 0_1() -> 3
             , 0_2() -> 6
             , n__incr_0(1) -> 1
             , n__incr_0(2) -> 1
             , n__incr_0(2) -> 2
             , n__incr_0(2) -> 3
             , n__incr_1(3) -> 1
             , n__incr_1(3) -> 3
             , n__incr_1(4) -> 1
             , n__incr_1(4) -> 2
             , n__incr_1(4) -> 3
             , n__incr_2(5) -> 3
             , n__incr_2(5) -> 5
             , n__incr_2(8) -> 7
             , n__oddNs_0() -> 1
             , n__oddNs_0() -> 2
             , n__oddNs_0() -> 3
             , n__oddNs_1() -> 3
             , n__oddNs_1() -> 4
             , n__oddNs_1() -> 5
             , n__oddNs_2() -> 5
             , n__oddNs_2() -> 8
             , oddNs_0() -> 1
             , oddNs_1() -> 3
             , oddNs_2() -> 5
             , incr_0(1) -> 1
             , incr_0(2) -> 1
             , incr_1(3) -> 1
             , incr_1(3) -> 3
             , incr_2(5) -> 3
             , incr_2(5) -> 5
             , activate_0(2) -> 1
             , activate_1(2) -> 3
             , activate_1(4) -> 3
             , activate_2(4) -> 5
             , take_0(2, 2) -> 1
             , take_1(3, 3) -> 1
             , take_1(3, 3) -> 3
             , nil_0() -> 1
             , nil_0() -> 2
             , nil_0() -> 3
             , nil_1() -> 1
             , nil_1() -> 3
             , n__take_0(2, 2) -> 1
             , n__take_0(2, 2) -> 2
             , n__take_0(2, 2) -> 3
             , n__take_1(3, 3) -> 1
             , n__take_1(3, 3) -> 3
             , zip_0(2, 2) -> 1
             , zip_1(3, 3) -> 1
             , zip_1(3, 3) -> 3
             , n__zip_0(2, 2) -> 1
             , n__zip_0(2, 2) -> 2
             , n__zip_0(2, 2) -> 3
             , n__zip_1(3, 3) -> 1
             , n__zip_1(3, 3) -> 3
             , repItems_0(2) -> 1
             , repItems_1(3) -> 1
             , repItems_1(3) -> 3
             , n__cons_0(2, 2) -> 1
             , n__cons_0(2, 2) -> 2
             , n__cons_0(2, 2) -> 3
             , n__cons_1(3, 2) -> 1
             , n__cons_1(3, 2) -> 3
             , n__cons_2(6, 7) -> 3
             , n__cons_2(6, 7) -> 5
             , n__repItems_0(2) -> 1
             , n__repItems_0(2) -> 2
             , n__repItems_0(2) -> 3
             , n__repItems_1(3) -> 1
             , n__repItems_1(3) -> 3}

Hurray, we answered YES(?,O(n^1))