We consider the following Problem:

  Strict Trs:
    {  active(zeros()) -> mark(cons(0(), zeros()))
     , active(tail(cons(X, XS))) -> mark(XS)
     , mark(zeros()) -> active(zeros())
     , mark(cons(X1, X2)) -> active(cons(mark(X1), X2))
     , mark(0()) -> active(0())
     , mark(tail(X)) -> active(tail(mark(X)))
     , cons(mark(X1), X2) -> cons(X1, X2)
     , cons(X1, mark(X2)) -> cons(X1, X2)
     , cons(active(X1), X2) -> cons(X1, X2)
     , cons(X1, active(X2)) -> cons(X1, X2)
     , tail(mark(X)) -> tail(X)
     , tail(active(X)) -> tail(X)}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  We consider the following Problem:
  
    Strict Trs:
      {  active(zeros()) -> mark(cons(0(), zeros()))
       , active(tail(cons(X, XS))) -> mark(XS)
       , mark(zeros()) -> active(zeros())
       , mark(cons(X1, X2)) -> active(cons(mark(X1), X2))
       , mark(0()) -> active(0())
       , mark(tail(X)) -> active(tail(mark(X)))
       , cons(mark(X1), X2) -> cons(X1, X2)
       , cons(X1, mark(X2)) -> cons(X1, X2)
       , cons(active(X1), X2) -> cons(X1, X2)
       , cons(X1, active(X2)) -> cons(X1, X2)
       , tail(mark(X)) -> tail(X)
       , tail(active(X)) -> tail(X)}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component:
      {  cons(mark(X1), X2) -> cons(X1, X2)
       , cons(active(X1), X2) -> cons(X1, X2)
       , tail(mark(X)) -> tail(X)
       , tail(active(X)) -> tail(X)}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(active) = {1}, Uargs(mark) = {}, Uargs(cons) = {1},
        Uargs(tail) = {1}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       active(x1) = [1 0] x1 + [1]
                    [0 0]      [1]
       zeros() = [0]
                 [0]
       mark(x1) = [1 0] x1 + [1]
                  [1 0]      [1]
       cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                      [0 0]      [0 0]      [1]
       0() = [0]
             [0]
       tail(x1) = [1 0] x1 + [0]
                  [0 0]      [1]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  active(zeros()) -> mark(cons(0(), zeros()))
         , active(tail(cons(X, XS))) -> mark(XS)
         , mark(zeros()) -> active(zeros())
         , mark(cons(X1, X2)) -> active(cons(mark(X1), X2))
         , mark(0()) -> active(0())
         , mark(tail(X)) -> active(tail(mark(X)))
         , cons(X1, mark(X2)) -> cons(X1, X2)
         , cons(X1, active(X2)) -> cons(X1, X2)}
      Weak Trs:
        {  cons(mark(X1), X2) -> cons(X1, X2)
         , cons(active(X1), X2) -> cons(X1, X2)
         , tail(mark(X)) -> tail(X)
         , tail(active(X)) -> tail(X)}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component:
        {  mark(zeros()) -> active(zeros())
         , mark(0()) -> active(0())}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(active) = {1}, Uargs(mark) = {}, Uargs(cons) = {1},
          Uargs(tail) = {1}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         active(x1) = [1 2] x1 + [1]
                      [0 0]      [1]
         zeros() = [0]
                   [0]
         mark(x1) = [1 0] x1 + [3]
                    [0 0]      [1]
         cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                        [0 0]      [0 0]      [3]
         0() = [0]
               [0]
         tail(x1) = [1 0] x1 + [1]
                    [0 0]      [3]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  active(zeros()) -> mark(cons(0(), zeros()))
           , active(tail(cons(X, XS))) -> mark(XS)
           , mark(cons(X1, X2)) -> active(cons(mark(X1), X2))
           , mark(tail(X)) -> active(tail(mark(X)))
           , cons(X1, mark(X2)) -> cons(X1, X2)
           , cons(X1, active(X2)) -> cons(X1, X2)}
        Weak Trs:
          {  mark(zeros()) -> active(zeros())
           , mark(0()) -> active(0())
           , cons(mark(X1), X2) -> cons(X1, X2)
           , cons(active(X1), X2) -> cons(X1, X2)
           , tail(mark(X)) -> tail(X)
           , tail(active(X)) -> tail(X)}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component: {active(zeros()) -> mark(cons(0(), zeros()))}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(active) = {1}, Uargs(mark) = {}, Uargs(cons) = {1},
            Uargs(tail) = {1}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           active(x1) = [1 1] x1 + [0]
                        [0 0]      [1]
           zeros() = [2]
                     [0]
           mark(x1) = [1 0] x1 + [1]
                      [0 0]      [1]
           cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                          [0 0]      [0 0]      [0]
           0() = [0]
                 [0]
           tail(x1) = [1 0] x1 + [0]
                      [0 0]      [3]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  active(tail(cons(X, XS))) -> mark(XS)
             , mark(cons(X1, X2)) -> active(cons(mark(X1), X2))
             , mark(tail(X)) -> active(tail(mark(X)))
             , cons(X1, mark(X2)) -> cons(X1, X2)
             , cons(X1, active(X2)) -> cons(X1, X2)}
          Weak Trs:
            {  active(zeros()) -> mark(cons(0(), zeros()))
             , mark(zeros()) -> active(zeros())
             , mark(0()) -> active(0())
             , cons(mark(X1), X2) -> cons(X1, X2)
             , cons(active(X1), X2) -> cons(X1, X2)
             , tail(mark(X)) -> tail(X)
             , tail(active(X)) -> tail(X)}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component:
            {  cons(X1, mark(X2)) -> cons(X1, X2)
             , cons(X1, active(X2)) -> cons(X1, X2)}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            The following argument positions are usable:
              Uargs(active) = {1}, Uargs(mark) = {}, Uargs(cons) = {1},
              Uargs(tail) = {1}
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             active(x1) = [1 0] x1 + [0]
                          [0 1]      [2]
             zeros() = [0]
                       [0]
             mark(x1) = [1 0] x1 + [0]
                        [0 1]      [2]
             cons(x1, x2) = [1 2] x1 + [0 2] x2 + [0]
                            [0 0]      [0 0]      [0]
             0() = [0]
                   [0]
             tail(x1) = [1 0] x1 + [0]
                        [0 0]      [1]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Strict Trs:
              {  active(tail(cons(X, XS))) -> mark(XS)
               , mark(cons(X1, X2)) -> active(cons(mark(X1), X2))
               , mark(tail(X)) -> active(tail(mark(X)))}
            Weak Trs:
              {  cons(X1, mark(X2)) -> cons(X1, X2)
               , cons(X1, active(X2)) -> cons(X1, X2)
               , active(zeros()) -> mark(cons(0(), zeros()))
               , mark(zeros()) -> active(zeros())
               , mark(0()) -> active(0())
               , cons(mark(X1), X2) -> cons(X1, X2)
               , cons(active(X1), X2) -> cons(X1, X2)
               , tail(mark(X)) -> tail(X)
               , tail(active(X)) -> tail(X)}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            The weightgap principle applies, where following rules are oriented strictly:
            
            TRS Component: {active(tail(cons(X, XS))) -> mark(XS)}
            
            Interpretation of nonconstant growth:
            -------------------------------------
              The following argument positions are usable:
                Uargs(active) = {1}, Uargs(mark) = {}, Uargs(cons) = {1},
                Uargs(tail) = {1}
              We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
              Interpretation Functions:
               active(x1) = [1 0] x1 + [0]
                            [0 0]      [0]
               zeros() = [0]
                         [0]
               mark(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
               cons(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 0]      [0 0]      [0]
               0() = [0]
                     [0]
               tail(x1) = [1 0] x1 + [2]
                          [0 0]      [1]
            
            The strictly oriented rules are moved into the weak component.
            
            We consider the following Problem:
            
              Strict Trs:
                {  mark(cons(X1, X2)) -> active(cons(mark(X1), X2))
                 , mark(tail(X)) -> active(tail(mark(X)))}
              Weak Trs:
                {  active(tail(cons(X, XS))) -> mark(XS)
                 , cons(X1, mark(X2)) -> cons(X1, X2)
                 , cons(X1, active(X2)) -> cons(X1, X2)
                 , active(zeros()) -> mark(cons(0(), zeros()))
                 , mark(zeros()) -> active(zeros())
                 , mark(0()) -> active(0())
                 , cons(mark(X1), X2) -> cons(X1, X2)
                 , cons(active(X1), X2) -> cons(X1, X2)
                 , tail(mark(X)) -> tail(X)
                 , tail(active(X)) -> tail(X)}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(?,O(n^1))
            
            Proof:
              We consider the following Problem:
              
                Strict Trs:
                  {  mark(cons(X1, X2)) -> active(cons(mark(X1), X2))
                   , mark(tail(X)) -> active(tail(mark(X)))}
                Weak Trs:
                  {  active(tail(cons(X, XS))) -> mark(XS)
                   , cons(X1, mark(X2)) -> cons(X1, X2)
                   , cons(X1, active(X2)) -> cons(X1, X2)
                   , active(zeros()) -> mark(cons(0(), zeros()))
                   , mark(zeros()) -> active(zeros())
                   , mark(0()) -> active(0())
                   , cons(mark(X1), X2) -> cons(X1, X2)
                   , cons(active(X1), X2) -> cons(X1, X2)
                   , tail(mark(X)) -> tail(X)
                   , tail(active(X)) -> tail(X)}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(?,O(n^1))
              
              Proof:
                The problem is match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  active_0(2) -> 1
                 , active_0(2) -> 3
                 , active_0(5) -> 1
                 , active_0(5) -> 3
                 , active_1(7) -> 1
                 , active_1(10) -> 8
                 , active_1(11) -> 8
                 , active_2(12) -> 1
                 , active_2(12) -> 3
                 , active_2(15) -> 13
                 , active_3(17) -> 8
                 , active_3(19) -> 18
                 , zeros_0() -> 2
                 , zeros_1() -> 11
                 , zeros_2() -> 16
                 , mark_0(2) -> 3
                 , mark_0(4) -> 1
                 , mark_0(5) -> 3
                 , mark_1(2) -> 8
                 , mark_1(5) -> 8
                 , mark_1(9) -> 1
                 , mark_1(9) -> 3
                 , mark_2(10) -> 13
                 , mark_2(14) -> 8
                 , mark_3(15) -> 18
                 , cons_0(2, 2) -> 4
                 , cons_0(2, 5) -> 4
                 , cons_0(5, 2) -> 4
                 , cons_0(5, 5) -> 4
                 , cons_1(2, 2) -> 7
                 , cons_1(2, 5) -> 7
                 , cons_1(5, 2) -> 7
                 , cons_1(5, 5) -> 7
                 , cons_1(8, 2) -> 7
                 , cons_1(8, 5) -> 7
                 , cons_1(10, 2) -> 7
                 , cons_1(10, 5) -> 7
                 , cons_1(10, 11) -> 9
                 , cons_1(11, 2) -> 7
                 , cons_1(11, 5) -> 7
                 , cons_2(10, 11) -> 12
                 , cons_2(13, 11) -> 12
                 , cons_2(14, 2) -> 7
                 , cons_2(14, 5) -> 7
                 , cons_2(15, 11) -> 12
                 , cons_2(15, 16) -> 14
                 , cons_2(17, 2) -> 7
                 , cons_2(17, 5) -> 7
                 , cons_3(15, 16) -> 17
                 , cons_3(18, 16) -> 17
                 , cons_3(19, 16) -> 17
                 , 0_0() -> 5
                 , 0_1() -> 10
                 , 0_2() -> 15
                 , 0_3() -> 19
                 , tail_0(2) -> 6
                 , tail_0(5) -> 6}

Hurray, we answered YES(?,O(n^1))