We consider the following Problem:
Strict Trs:
{ zeros() -> cons(0(), n__zeros())
, tail(cons(X, XS)) -> activate(XS)
, zeros() -> n__zeros()
, activate(n__zeros()) -> zeros()
, activate(X) -> X}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
We consider the following Problem:
Strict Trs:
{ zeros() -> cons(0(), n__zeros())
, tail(cons(X, XS)) -> activate(XS)
, zeros() -> n__zeros()
, activate(n__zeros()) -> zeros()
, activate(X) -> X}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component:
{ zeros() -> cons(0(), n__zeros())
, zeros() -> n__zeros()}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(cons) = {}, Uargs(tail) = {}, Uargs(activate) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
zeros() = [2]
[2]
cons(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
[0 0] [0 0] [1]
0() = [0]
[0]
n__zeros() = [0]
[0]
tail(x1) = [1 0] x1 + [0]
[0 0] [1]
activate(x1) = [1 0] x1 + [1]
[0 0] [1]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ tail(cons(X, XS)) -> activate(XS)
, activate(n__zeros()) -> zeros()
, activate(X) -> X}
Weak Trs:
{ zeros() -> cons(0(), n__zeros())
, zeros() -> n__zeros()}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {activate(n__zeros()) -> zeros()}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(cons) = {}, Uargs(tail) = {}, Uargs(activate) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
zeros() = [0]
[1]
cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [1]
0() = [0]
[0]
n__zeros() = [0]
[0]
tail(x1) = [1 0] x1 + [1]
[0 0] [1]
activate(x1) = [1 0] x1 + [1]
[0 0] [1]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ tail(cons(X, XS)) -> activate(XS)
, activate(X) -> X}
Weak Trs:
{ activate(n__zeros()) -> zeros()
, zeros() -> cons(0(), n__zeros())
, zeros() -> n__zeros()}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {activate(X) -> X}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(cons) = {}, Uargs(tail) = {}, Uargs(activate) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
zeros() = [0]
[1]
cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
[0 1] [0 0] [1]
0() = [0]
[0]
n__zeros() = [0]
[0]
tail(x1) = [1 0] x1 + [1]
[0 0] [1]
activate(x1) = [1 0] x1 + [1]
[0 1] [1]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs: {tail(cons(X, XS)) -> activate(XS)}
Weak Trs:
{ activate(X) -> X
, activate(n__zeros()) -> zeros()
, zeros() -> cons(0(), n__zeros())
, zeros() -> n__zeros()}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {tail(cons(X, XS)) -> activate(XS)}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(cons) = {}, Uargs(tail) = {}, Uargs(activate) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
zeros() = [0]
[0]
cons(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
[0 1] [0 1] [0]
0() = [0]
[0]
n__zeros() = [0]
[0]
tail(x1) = [1 0] x1 + [1]
[0 1] [1]
activate(x1) = [1 0] x1 + [0]
[0 1] [1]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Weak Trs:
{ tail(cons(X, XS)) -> activate(XS)
, activate(X) -> X
, activate(n__zeros()) -> zeros()
, zeros() -> cons(0(), n__zeros())
, zeros() -> n__zeros()}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(O(1),O(1))
Proof:
We consider the following Problem:
Weak Trs:
{ tail(cons(X, XS)) -> activate(XS)
, activate(X) -> X
, activate(n__zeros()) -> zeros()
, zeros() -> cons(0(), n__zeros())
, zeros() -> n__zeros()}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(O(1),O(1))
Proof:
Empty rules are trivially bounded
Hurray, we answered YES(?,O(n^1))