We consider the following Problem: Strict Trs: { zeros() -> cons(0(), n__zeros()) , tail(cons(X, XS)) -> activate(XS) , zeros() -> n__zeros() , activate(n__zeros()) -> zeros() , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { zeros() -> cons(0(), n__zeros()) , tail(cons(X, XS)) -> activate(XS) , zeros() -> n__zeros() , activate(n__zeros()) -> zeros() , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { zeros() -> cons(0(), n__zeros()) , zeros() -> n__zeros()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cons) = {}, Uargs(tail) = {}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: zeros() = [2] [2] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] 0() = [0] [0] n__zeros() = [0] [0] tail(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [1] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { tail(cons(X, XS)) -> activate(XS) , activate(n__zeros()) -> zeros() , activate(X) -> X} Weak Trs: { zeros() -> cons(0(), n__zeros()) , zeros() -> n__zeros()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(n__zeros()) -> zeros()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cons) = {}, Uargs(tail) = {}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: zeros() = [0] [1] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] 0() = [0] [0] n__zeros() = [0] [0] tail(x1) = [1 0] x1 + [1] [0 0] [1] activate(x1) = [1 0] x1 + [1] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { tail(cons(X, XS)) -> activate(XS) , activate(X) -> X} Weak Trs: { activate(n__zeros()) -> zeros() , zeros() -> cons(0(), n__zeros()) , zeros() -> n__zeros()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(X) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cons) = {}, Uargs(tail) = {}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: zeros() = [0] [1] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 1] [0 0] [1] 0() = [0] [0] n__zeros() = [0] [0] tail(x1) = [1 0] x1 + [1] [0 0] [1] activate(x1) = [1 0] x1 + [1] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {tail(cons(X, XS)) -> activate(XS)} Weak Trs: { activate(X) -> X , activate(n__zeros()) -> zeros() , zeros() -> cons(0(), n__zeros()) , zeros() -> n__zeros()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {tail(cons(X, XS)) -> activate(XS)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cons) = {}, Uargs(tail) = {}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: zeros() = [0] [0] cons(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] 0() = [0] [0] n__zeros() = [0] [0] tail(x1) = [1 0] x1 + [1] [0 1] [1] activate(x1) = [1 0] x1 + [0] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Weak Trs: { tail(cons(X, XS)) -> activate(XS) , activate(X) -> X , activate(n__zeros()) -> zeros() , zeros() -> cons(0(), n__zeros()) , zeros() -> n__zeros()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { tail(cons(X, XS)) -> activate(XS) , activate(X) -> X , activate(n__zeros()) -> zeros() , zeros() -> cons(0(), n__zeros()) , zeros() -> n__zeros()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))