We consider the following Problem: Strict Trs: { a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__p(s(0())) -> 0() , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__f(X) -> f(X) , a__p(X) -> p(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__p(s(0())) -> 0() , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__f(X) -> f(X) , a__p(X) -> p(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { mark(0()) -> 0() , a__f(X) -> f(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(a__f) = {1}, Uargs(cons) = {1}, Uargs(f) = {}, Uargs(s) = {1}, Uargs(a__p) = {1}, Uargs(mark) = {}, Uargs(p) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: a__f(x1) = [1 0] x1 + [1] [0 0] [1] 0() = [0] [0] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] f(x1) = [0 0] x1 + [0] [0 0] [0] s(x1) = [1 0] x1 + [0] [0 0] [1] a__p(x1) = [1 0] x1 + [0] [0 0] [1] mark(x1) = [0 0] x1 + [1] [0 0] [1] p(x1) = [0 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__p(s(0())) -> 0() , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(X) -> p(X)} Weak Trs: { mark(0()) -> 0() , a__f(X) -> f(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {a__p(s(0())) -> 0()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(a__f) = {1}, Uargs(cons) = {1}, Uargs(f) = {}, Uargs(s) = {1}, Uargs(a__p) = {1}, Uargs(mark) = {}, Uargs(p) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: a__f(x1) = [1 0] x1 + [1] [0 0] [1] 0() = [0] [0] cons(x1, x2) = [1 1] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] f(x1) = [0 0] x1 + [0] [0 0] [0] s(x1) = [1 0] x1 + [0] [0 0] [2] a__p(x1) = [1 2] x1 + [0] [0 0] [0] mark(x1) = [0 0] x1 + [0] [0 0] [3] p(x1) = [0 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(X) -> p(X)} Weak Trs: { a__p(s(0())) -> 0() , mark(0()) -> 0() , a__f(X) -> f(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {a__p(X) -> p(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(a__f) = {1}, Uargs(cons) = {1}, Uargs(f) = {}, Uargs(s) = {1}, Uargs(a__p) = {1}, Uargs(mark) = {}, Uargs(p) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: a__f(x1) = [1 1] x1 + [1] [0 0] [1] 0() = [0] [0] cons(x1, x2) = [1 2] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] f(x1) = [0 0] x1 + [0] [0 0] [0] s(x1) = [1 0] x1 + [0] [0 1] [0] a__p(x1) = [1 0] x1 + [2] [0 1] [2] mark(x1) = [0 0] x1 + [2] [0 0] [3] p(x1) = [0 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X))} Weak Trs: { a__p(X) -> p(X) , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__f(X) -> f(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {a__f(0()) -> cons(0(), f(s(0())))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(a__f) = {1}, Uargs(cons) = {1}, Uargs(f) = {}, Uargs(s) = {1}, Uargs(a__p) = {1}, Uargs(mark) = {}, Uargs(p) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: a__f(x1) = [1 0] x1 + [1] [0 0] [1] 0() = [0] [0] cons(x1, x2) = [1 3] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] f(x1) = [0 0] x1 + [0] [0 0] [0] s(x1) = [1 0] x1 + [2] [0 0] [0] a__p(x1) = [1 0] x1 + [2] [0 0] [1] mark(x1) = [0 0] x1 + [3] [0 0] [3] p(x1) = [0 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { a__f(s(0())) -> a__f(a__p(s(0()))) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X))} Weak Trs: { a__f(0()) -> cons(0(), f(s(0()))) , a__p(X) -> p(X) , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__f(X) -> f(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {a__f(s(0())) -> a__f(a__p(s(0())))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(a__f) = {1}, Uargs(cons) = {1}, Uargs(f) = {}, Uargs(s) = {1}, Uargs(a__p) = {1}, Uargs(mark) = {}, Uargs(p) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: a__f(x1) = [1 2] x1 + [0] [0 0] [0] 0() = [1] [1] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] f(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [1 2] x1 + [0] [0 0] [3] a__p(x1) = [1 0] x1 + [1] [0 0] [2] mark(x1) = [1 0] x1 + [0] [0 0] [1] p(x1) = [1 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X))} Weak Trs: { a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(0()) -> cons(0(), f(s(0()))) , a__p(X) -> p(X) , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__f(X) -> f(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {mark(f(X)) -> a__f(mark(X))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(a__f) = {1}, Uargs(cons) = {1}, Uargs(f) = {}, Uargs(s) = {1}, Uargs(a__p) = {1}, Uargs(mark) = {}, Uargs(p) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: a__f(x1) = [1 0] x1 + [0] [0 1] [1] 0() = [0] [1] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 1] [0 0] [0] f(x1) = [0 0] x1 + [0] [0 1] [1] s(x1) = [1 0] x1 + [0] [0 1] [0] a__p(x1) = [1 0] x1 + [0] [0 1] [0] mark(x1) = [0 1] x1 + [0] [0 1] [0] p(x1) = [0 0] x1 + [0] [0 1] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { mark(p(X)) -> a__p(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X))} Weak Trs: { mark(f(X)) -> a__f(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(0()) -> cons(0(), f(s(0()))) , a__p(X) -> p(X) , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__f(X) -> f(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {mark(cons(X1, X2)) -> cons(mark(X1), X2)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(a__f) = {1}, Uargs(cons) = {1}, Uargs(f) = {}, Uargs(s) = {1}, Uargs(a__p) = {1}, Uargs(mark) = {}, Uargs(p) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: a__f(x1) = [1 0] x1 + [0] [0 1] [1] 0() = [0] [0] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 1] [0 0] [1] f(x1) = [0 0] x1 + [0] [0 1] [1] s(x1) = [1 0] x1 + [0] [0 1] [0] a__p(x1) = [1 0] x1 + [0] [0 1] [0] mark(x1) = [0 2] x1 + [0] [0 1] [0] p(x1) = [0 0] x1 + [0] [0 1] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { mark(p(X)) -> a__p(mark(X)) , mark(s(X)) -> s(mark(X))} Weak Trs: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(f(X)) -> a__f(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(0()) -> cons(0(), f(s(0()))) , a__p(X) -> p(X) , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__f(X) -> f(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {mark(s(X)) -> s(mark(X))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(a__f) = {1}, Uargs(cons) = {1}, Uargs(f) = {}, Uargs(s) = {1}, Uargs(a__p) = {1}, Uargs(mark) = {}, Uargs(p) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: a__f(x1) = [1 0] x1 + [0] [0 1] [0] 0() = [0] [0] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 1] [0 0] [0] f(x1) = [0 0] x1 + [0] [0 1] [0] s(x1) = [1 0] x1 + [0] [0 1] [1] a__p(x1) = [1 0] x1 + [0] [0 1] [0] mark(x1) = [0 1] x1 + [0] [0 1] [0] p(x1) = [0 0] x1 + [0] [0 1] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {mark(p(X)) -> a__p(mark(X))} Weak Trs: { mark(s(X)) -> s(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(f(X)) -> a__f(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(0()) -> cons(0(), f(s(0()))) , a__p(X) -> p(X) , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__f(X) -> f(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: {mark(p(X)) -> a__p(mark(X))} Weak Trs: { mark(s(X)) -> s(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(f(X)) -> a__f(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(0()) -> cons(0(), f(s(0()))) , a__p(X) -> p(X) , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__f(X) -> f(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { a__f_0(1) -> 1 , a__f_0(2) -> 1 , a__f_1(3) -> 3 , a__f_1(4) -> 1 , 0_0() -> 1 , 0_0() -> 2 , 0_1() -> 1 , 0_1() -> 3 , 0_1() -> 4 , 0_1() -> 6 , cons_0(1, 2) -> 1 , cons_0(2, 2) -> 1 , cons_0(2, 2) -> 2 , cons_1(3, 2) -> 3 , cons_1(6, 7) -> 1 , cons_1(6, 7) -> 3 , f_0(1) -> 1 , f_0(2) -> 1 , f_0(2) -> 2 , f_1(3) -> 3 , f_1(4) -> 1 , f_1(5) -> 7 , s_0(1) -> 1 , s_0(2) -> 2 , s_1(3) -> 3 , s_1(6) -> 5 , a__p_0(2) -> 1 , a__p_1(3) -> 1 , a__p_1(3) -> 3 , a__p_1(5) -> 4 , mark_0(2) -> 1 , mark_1(2) -> 3 , p_0(2) -> 1 , p_0(2) -> 2 , p_1(3) -> 1 , p_1(3) -> 3 , p_1(5) -> 4} Hurray, we answered YES(?,O(n^1))