We consider the following Problem:
Strict Trs:
{ active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
, mark(f(X1, X2)) -> active(f(mark(X1), X2))
, mark(g(X)) -> active(g(mark(X)))
, f(mark(X1), X2) -> f(X1, X2)
, f(X1, mark(X2)) -> f(X1, X2)
, f(active(X1), X2) -> f(X1, X2)
, f(X1, active(X2)) -> f(X1, X2)
, g(mark(X)) -> g(X)
, g(active(X)) -> g(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
We consider the following Problem:
Strict Trs:
{ active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
, mark(f(X1, X2)) -> active(f(mark(X1), X2))
, mark(g(X)) -> active(g(mark(X)))
, f(mark(X1), X2) -> f(X1, X2)
, f(X1, mark(X2)) -> f(X1, X2)
, f(active(X1), X2) -> f(X1, X2)
, f(X1, active(X2)) -> f(X1, X2)
, g(mark(X)) -> g(X)
, g(active(X)) -> g(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component:
{ f(mark(X1), X2) -> f(X1, X2)
, f(active(X1), X2) -> f(X1, X2)
, g(mark(X)) -> g(X)
, g(active(X)) -> g(X)}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(active) = {1}, Uargs(f) = {1}, Uargs(g) = {1},
Uargs(mark) = {1}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
active(x1) = [1 0] x1 + [1]
[0 0] [1]
f(x1, x2) = [1 0] x1 + [0 0] x2 + [2]
[0 0] [0 0] [1]
g(x1) = [1 0] x1 + [0]
[0 0] [1]
mark(x1) = [1 0] x1 + [3]
[0 0] [1]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ active(f(g(X), Y))