We consider the following Problem: Strict Trs: { active(f(g(X), Y)) -> mark(f(X, f(g(X), Y))) , mark(f(X1, X2)) -> active(f(mark(X1), X2)) , mark(g(X)) -> active(g(mark(X))) , f(mark(X1), X2) -> f(X1, X2) , f(X1, mark(X2)) -> f(X1, X2) , f(active(X1), X2) -> f(X1, X2) , f(X1, active(X2)) -> f(X1, X2) , g(mark(X)) -> g(X) , g(active(X)) -> g(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { active(f(g(X), Y)) -> mark(f(X, f(g(X), Y))) , mark(f(X1, X2)) -> active(f(mark(X1), X2)) , mark(g(X)) -> active(g(mark(X))) , f(mark(X1), X2) -> f(X1, X2) , f(X1, mark(X2)) -> f(X1, X2) , f(active(X1), X2) -> f(X1, X2) , f(X1, active(X2)) -> f(X1, X2) , g(mark(X)) -> g(X) , g(active(X)) -> g(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { f(mark(X1), X2) -> f(X1, X2) , f(active(X1), X2) -> f(X1, X2) , g(mark(X)) -> g(X) , g(active(X)) -> g(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(active) = {1}, Uargs(f) = {1}, Uargs(g) = {1}, Uargs(mark) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: active(x1) = [1 0] x1 + [1] [0 0] [1] f(x1, x2) = [1 0] x1 + [0 0] x2 + [2] [0 0] [0 0] [1] g(x1) = [1 0] x1 + [0] [0 0] [1] mark(x1) = [1 0] x1 + [3] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { active(f(g(X), Y))