(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(g(z0), z1)) → c(F(z0, f(g(z0), z1)), F(g(z0), z1), G(z0))
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(g(z0), z1)) → c(F(z0, f(g(z0), z1)), F(g(z0), z1), G(z0))
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
ACTIVE, F, G, PROPER, TOP
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10
(3) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
S tuples:
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
K tuples:none
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
ACTIVE, F, G, PROPER, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
We considered the (Usable) Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
And the Tuples:
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [2]
POL(F(x1, x2)) = 0
POL(G(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [4]x1
POL(active(x1)) = x1
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(f(x1, x2)) = [2]x1
POL(g(x1)) = [4]x1
POL(mark(x1)) = x1
POL(ok(x1)) = [2] + x1
POL(proper(x1)) = 0
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
S tuples:
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
K tuples:
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
ACTIVE, F, G, PROPER, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
We considered the (Usable) Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
And the Tuples:
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1, x2)) = 0
POL(G(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [2]x1
POL(active(x1)) = [4]
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(f(x1, x2)) = x1
POL(g(x1)) = x1
POL(mark(x1)) = [4]
POL(ok(x1)) = [4] + x1
POL(proper(x1)) = 0
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
S tuples:
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
K tuples:
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
ACTIVE, F, G, PROPER, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(ok(z0), ok(z1)) → c4(F(z0, z1))
We considered the (Usable) Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
And the Tuples:
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [2]x1
POL(F(x1, x2)) = x2
POL(G(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [2]x1 + [2]x12
POL(active(x1)) = x1
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(f(x1, x2)) = x1 + [2]x2
POL(g(x1)) = x1
POL(mark(x1)) = 0
POL(ok(x1)) = [1] + x1
POL(proper(x1)) = 0
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
S tuples:
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
K tuples:
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
ACTIVE, F, G, PROPER, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(ok(z0)) → c6(G(z0))
We considered the (Usable) Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
And the Tuples:
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = x1
POL(F(x1, x2)) = 0
POL(G(x1)) = x1
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [2]x12
POL(active(x1)) = x1
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(f(x1, x2)) = x1
POL(g(x1)) = [2]x1
POL(mark(x1)) = x1
POL(ok(x1)) = [1] + x1
POL(proper(x1)) = 0
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
S tuples:
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
G(mark(z0)) → c5(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
K tuples:
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(ok(z0)) → c6(G(z0))
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
ACTIVE, F, G, PROPER, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c
(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
We considered the (Usable) Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
And the Tuples:
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [2] + x1
POL(F(x1, x2)) = 0
POL(G(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [2]x12
POL(active(x1)) = x1
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(f(x1, x2)) = [2]x1
POL(g(x1)) = [1] + [2]x1
POL(mark(x1)) = x1
POL(ok(x1)) = [1] + x1
POL(proper(x1)) = x1
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
S tuples:
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
G(mark(z0)) → c5(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
K tuples:
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(ok(z0)) → c6(G(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
ACTIVE, F, G, PROPER, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c
(15) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
We considered the (Usable) Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
And the Tuples:
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [2]x1
POL(F(x1, x2)) = 0
POL(G(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = x12
POL(active(x1)) = x1
POL(c(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(f(x1, x2)) = [1] + [2]x1
POL(g(x1)) = x1
POL(mark(x1)) = x1
POL(ok(x1)) = [2] + x1
POL(proper(x1)) = x1
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
S tuples:
F(mark(z0), z1) → c3(F(z0, z1))
G(mark(z0)) → c5(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
K tuples:
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(ok(z0)) → c6(G(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
ACTIVE, F, G, PROPER, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
f(
z0,
z1)) →
c1(
F(
active(
z0),
z1),
ACTIVE(
z0)) by
ACTIVE(f(f(g(z0), z1), x1)) → c1(F(mark(f(z0, f(g(z0), z1))), x1), ACTIVE(f(g(z0), z1)))
ACTIVE(f(f(z0, z1), x1)) → c1(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(z0), x1)) → c1(F(g(active(z0)), x1), ACTIVE(g(z0)))
ACTIVE(f(x0, x1)) → c1
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
ACTIVE(f(f(g(z0), z1), x1)) → c1(F(mark(f(z0, f(g(z0), z1))), x1), ACTIVE(f(g(z0), z1)))
ACTIVE(f(f(z0, z1), x1)) → c1(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(z0), x1)) → c1(F(g(active(z0)), x1), ACTIVE(g(z0)))
ACTIVE(f(x0, x1)) → c1
S tuples:
F(mark(z0), z1) → c3(F(z0, z1))
G(mark(z0)) → c5(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
K tuples:
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(ok(z0)) → c6(G(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
ACTIVE(f(z0, z1)) → c1(F(active(z0), z1), ACTIVE(z0))
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
ACTIVE, F, G, PROPER, TOP
Compound Symbols:
c2, c3, c4, c5, c6, c7, c8, c9, c10, c, c1, c1
(19) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
ACTIVE(f(x0, x1)) → c1
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
ACTIVE(f(f(g(z0), z1), x1)) → c1(F(mark(f(z0, f(g(z0), z1))), x1), ACTIVE(f(g(z0), z1)))
ACTIVE(f(f(z0, z1), x1)) → c1(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(z0), x1)) → c1(F(g(active(z0)), x1), ACTIVE(g(z0)))
S tuples:
F(mark(z0), z1) → c3(F(z0, z1))
G(mark(z0)) → c5(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
K tuples:
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(ok(z0)) → c6(G(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
ACTIVE, F, G, PROPER, TOP
Compound Symbols:
c2, c3, c4, c5, c6, c7, c8, c9, c10, c, c1
(21) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
g(
z0)) →
c2(
G(
active(
z0)),
ACTIVE(
z0)) by
ACTIVE(g(f(g(z0), z1))) → c2(G(mark(f(z0, f(g(z0), z1)))), ACTIVE(f(g(z0), z1)))
ACTIVE(g(f(z0, z1))) → c2(G(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(g(g(z0))) → c2(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(x0)) → c2
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
ACTIVE(f(f(g(z0), z1), x1)) → c1(F(mark(f(z0, f(g(z0), z1))), x1), ACTIVE(f(g(z0), z1)))
ACTIVE(f(f(z0, z1), x1)) → c1(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(z0), x1)) → c1(F(g(active(z0)), x1), ACTIVE(g(z0)))
ACTIVE(g(f(g(z0), z1))) → c2(G(mark(f(z0, f(g(z0), z1)))), ACTIVE(f(g(z0), z1)))
ACTIVE(g(f(z0, z1))) → c2(G(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(g(g(z0))) → c2(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(x0)) → c2
S tuples:
F(mark(z0), z1) → c3(F(z0, z1))
G(mark(z0)) → c5(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
K tuples:
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(ok(z0)) → c6(G(z0))
ACTIVE(g(z0)) → c2(G(active(z0)), ACTIVE(z0))
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
F, G, PROPER, TOP, ACTIVE
Compound Symbols:
c3, c4, c5, c6, c7, c8, c9, c10, c, c1, c2, c2
(23) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
ACTIVE(g(x0)) → c2
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
ACTIVE(f(f(g(z0), z1), x1)) → c1(F(mark(f(z0, f(g(z0), z1))), x1), ACTIVE(f(g(z0), z1)))
ACTIVE(f(f(z0, z1), x1)) → c1(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(z0), x1)) → c1(F(g(active(z0)), x1), ACTIVE(g(z0)))
ACTIVE(g(f(g(z0), z1))) → c2(G(mark(f(z0, f(g(z0), z1)))), ACTIVE(f(g(z0), z1)))
ACTIVE(g(f(z0, z1))) → c2(G(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(g(g(z0))) → c2(G(g(active(z0))), ACTIVE(g(z0)))
S tuples:
F(mark(z0), z1) → c3(F(z0, z1))
G(mark(z0)) → c5(G(z0))
PROPER(f(z0, z1)) → c7(F(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
K tuples:
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(ok(z0)) → c6(G(z0))
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
F, G, PROPER, TOP, ACTIVE
Compound Symbols:
c3, c4, c5, c6, c7, c8, c9, c10, c, c1, c2
(25) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
f(
z0,
z1)) →
c7(
F(
proper(
z0),
proper(
z1)),
PROPER(
z0),
PROPER(
z1)) by
PROPER(f(x0, f(z0, z1))) → c7(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(x0, g(z0))) → c7(F(proper(x0), g(proper(z0))), PROPER(x0), PROPER(g(z0)))
PROPER(f(f(z0, z1), x1)) → c7(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(g(z0), x1)) → c7(F(g(proper(z0)), proper(x1)), PROPER(g(z0)), PROPER(x1))
PROPER(f(x0, x1)) → c7
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
ACTIVE(f(f(g(z0), z1), x1)) → c1(F(mark(f(z0, f(g(z0), z1))), x1), ACTIVE(f(g(z0), z1)))
ACTIVE(f(f(z0, z1), x1)) → c1(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(z0), x1)) → c1(F(g(active(z0)), x1), ACTIVE(g(z0)))
ACTIVE(g(f(g(z0), z1))) → c2(G(mark(f(z0, f(g(z0), z1)))), ACTIVE(f(g(z0), z1)))
ACTIVE(g(f(z0, z1))) → c2(G(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(g(g(z0))) → c2(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(x0, f(z0, z1))) → c7(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(x0, g(z0))) → c7(F(proper(x0), g(proper(z0))), PROPER(x0), PROPER(g(z0)))
PROPER(f(f(z0, z1), x1)) → c7(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(g(z0), x1)) → c7(F(g(proper(z0)), proper(x1)), PROPER(g(z0)), PROPER(x1))
PROPER(f(x0, x1)) → c7
S tuples:
F(mark(z0), z1) → c3(F(z0, z1))
G(mark(z0)) → c5(G(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(f(x0, f(z0, z1))) → c7(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(x0, g(z0))) → c7(F(proper(x0), g(proper(z0))), PROPER(x0), PROPER(g(z0)))
PROPER(f(f(z0, z1), x1)) → c7(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(g(z0), x1)) → c7(F(g(proper(z0)), proper(x1)), PROPER(g(z0)), PROPER(x1))
PROPER(f(x0, x1)) → c7
K tuples:
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(ok(z0)) → c6(G(z0))
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
F, G, PROPER, TOP, ACTIVE
Compound Symbols:
c3, c4, c5, c6, c8, c9, c10, c, c1, c2, c7, c7
(27) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
PROPER(f(x0, x1)) → c7
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
ACTIVE(f(f(g(z0), z1), x1)) → c1(F(mark(f(z0, f(g(z0), z1))), x1), ACTIVE(f(g(z0), z1)))
ACTIVE(f(f(z0, z1), x1)) → c1(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(z0), x1)) → c1(F(g(active(z0)), x1), ACTIVE(g(z0)))
ACTIVE(g(f(g(z0), z1))) → c2(G(mark(f(z0, f(g(z0), z1)))), ACTIVE(f(g(z0), z1)))
ACTIVE(g(f(z0, z1))) → c2(G(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(g(g(z0))) → c2(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(x0, f(z0, z1))) → c7(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(x0, g(z0))) → c7(F(proper(x0), g(proper(z0))), PROPER(x0), PROPER(g(z0)))
PROPER(f(f(z0, z1), x1)) → c7(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(g(z0), x1)) → c7(F(g(proper(z0)), proper(x1)), PROPER(g(z0)), PROPER(x1))
S tuples:
F(mark(z0), z1) → c3(F(z0, z1))
G(mark(z0)) → c5(G(z0))
PROPER(g(z0)) → c8(G(proper(z0)), PROPER(z0))
PROPER(f(x0, f(z0, z1))) → c7(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(x0, g(z0))) → c7(F(proper(x0), g(proper(z0))), PROPER(x0), PROPER(g(z0)))
PROPER(f(f(z0, z1), x1)) → c7(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(g(z0), x1)) → c7(F(g(proper(z0)), proper(x1)), PROPER(g(z0)), PROPER(x1))
K tuples:
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(ok(z0)) → c6(G(z0))
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
F, G, PROPER, TOP, ACTIVE
Compound Symbols:
c3, c4, c5, c6, c8, c9, c10, c, c1, c2, c7
(29) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
g(
z0)) →
c8(
G(
proper(
z0)),
PROPER(
z0)) by
PROPER(g(f(z0, z1))) → c8(G(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(x0)) → c8
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
ACTIVE(f(f(g(z0), z1), x1)) → c1(F(mark(f(z0, f(g(z0), z1))), x1), ACTIVE(f(g(z0), z1)))
ACTIVE(f(f(z0, z1), x1)) → c1(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(z0), x1)) → c1(F(g(active(z0)), x1), ACTIVE(g(z0)))
ACTIVE(g(f(g(z0), z1))) → c2(G(mark(f(z0, f(g(z0), z1)))), ACTIVE(f(g(z0), z1)))
ACTIVE(g(f(z0, z1))) → c2(G(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(g(g(z0))) → c2(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(x0, f(z0, z1))) → c7(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(x0, g(z0))) → c7(F(proper(x0), g(proper(z0))), PROPER(x0), PROPER(g(z0)))
PROPER(f(f(z0, z1), x1)) → c7(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(g(z0), x1)) → c7(F(g(proper(z0)), proper(x1)), PROPER(g(z0)), PROPER(x1))
PROPER(g(f(z0, z1))) → c8(G(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(x0)) → c8
S tuples:
F(mark(z0), z1) → c3(F(z0, z1))
G(mark(z0)) → c5(G(z0))
PROPER(f(x0, f(z0, z1))) → c7(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(x0, g(z0))) → c7(F(proper(x0), g(proper(z0))), PROPER(x0), PROPER(g(z0)))
PROPER(f(f(z0, z1), x1)) → c7(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(g(z0), x1)) → c7(F(g(proper(z0)), proper(x1)), PROPER(g(z0)), PROPER(x1))
PROPER(g(f(z0, z1))) → c8(G(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(x0)) → c8
K tuples:
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(ok(z0)) → c6(G(z0))
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
F, G, TOP, ACTIVE, PROPER
Compound Symbols:
c3, c4, c5, c6, c9, c10, c, c1, c2, c7, c8, c8
(31) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
PROPER(g(x0)) → c8
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
ACTIVE(f(f(g(z0), z1), x1)) → c1(F(mark(f(z0, f(g(z0), z1))), x1), ACTIVE(f(g(z0), z1)))
ACTIVE(f(f(z0, z1), x1)) → c1(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(z0), x1)) → c1(F(g(active(z0)), x1), ACTIVE(g(z0)))
ACTIVE(g(f(g(z0), z1))) → c2(G(mark(f(z0, f(g(z0), z1)))), ACTIVE(f(g(z0), z1)))
ACTIVE(g(f(z0, z1))) → c2(G(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(g(g(z0))) → c2(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(x0, f(z0, z1))) → c7(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(x0, g(z0))) → c7(F(proper(x0), g(proper(z0))), PROPER(x0), PROPER(g(z0)))
PROPER(f(f(z0, z1), x1)) → c7(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(g(z0), x1)) → c7(F(g(proper(z0)), proper(x1)), PROPER(g(z0)), PROPER(x1))
PROPER(g(f(z0, z1))) → c8(G(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
S tuples:
F(mark(z0), z1) → c3(F(z0, z1))
G(mark(z0)) → c5(G(z0))
PROPER(f(x0, f(z0, z1))) → c7(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(x0, g(z0))) → c7(F(proper(x0), g(proper(z0))), PROPER(x0), PROPER(g(z0)))
PROPER(f(f(z0, z1), x1)) → c7(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(g(z0), x1)) → c7(F(g(proper(z0)), proper(x1)), PROPER(g(z0)), PROPER(x1))
PROPER(g(f(z0, z1))) → c8(G(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
K tuples:
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(ok(z0)) → c6(G(z0))
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
F, G, TOP, ACTIVE, PROPER
Compound Symbols:
c3, c4, c5, c6, c9, c10, c, c1, c2, c7, c8
(33) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
mark(
z0)) →
c9(
TOP(
proper(
z0)),
PROPER(
z0)) by
TOP(mark(f(z0, z1))) → c9(TOP(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
TOP(mark(g(z0))) → c9(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(x0)) → c9
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
ACTIVE(f(f(g(z0), z1), x1)) → c1(F(mark(f(z0, f(g(z0), z1))), x1), ACTIVE(f(g(z0), z1)))
ACTIVE(f(f(z0, z1), x1)) → c1(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(z0), x1)) → c1(F(g(active(z0)), x1), ACTIVE(g(z0)))
ACTIVE(g(f(g(z0), z1))) → c2(G(mark(f(z0, f(g(z0), z1)))), ACTIVE(f(g(z0), z1)))
ACTIVE(g(f(z0, z1))) → c2(G(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(g(g(z0))) → c2(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(x0, f(z0, z1))) → c7(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(x0, g(z0))) → c7(F(proper(x0), g(proper(z0))), PROPER(x0), PROPER(g(z0)))
PROPER(f(f(z0, z1), x1)) → c7(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(g(z0), x1)) → c7(F(g(proper(z0)), proper(x1)), PROPER(g(z0)), PROPER(x1))
PROPER(g(f(z0, z1))) → c8(G(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
TOP(mark(f(z0, z1))) → c9(TOP(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
TOP(mark(g(z0))) → c9(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(x0)) → c9
S tuples:
F(mark(z0), z1) → c3(F(z0, z1))
G(mark(z0)) → c5(G(z0))
PROPER(f(x0, f(z0, z1))) → c7(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(x0, g(z0))) → c7(F(proper(x0), g(proper(z0))), PROPER(x0), PROPER(g(z0)))
PROPER(f(f(z0, z1), x1)) → c7(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(g(z0), x1)) → c7(F(g(proper(z0)), proper(x1)), PROPER(g(z0)), PROPER(x1))
PROPER(g(f(z0, z1))) → c8(G(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
K tuples:
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
TOP(mark(z0)) → c9(TOP(proper(z0)), PROPER(z0))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(ok(z0)) → c6(G(z0))
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
F, G, TOP, ACTIVE, PROPER
Compound Symbols:
c3, c4, c5, c6, c10, c, c1, c2, c7, c8, c9, c9
(35) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
TOP(mark(x0)) → c9
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
ACTIVE(f(f(g(z0), z1), x1)) → c1(F(mark(f(z0, f(g(z0), z1))), x1), ACTIVE(f(g(z0), z1)))
ACTIVE(f(f(z0, z1), x1)) → c1(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(z0), x1)) → c1(F(g(active(z0)), x1), ACTIVE(g(z0)))
ACTIVE(g(f(g(z0), z1))) → c2(G(mark(f(z0, f(g(z0), z1)))), ACTIVE(f(g(z0), z1)))
ACTIVE(g(f(z0, z1))) → c2(G(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(g(g(z0))) → c2(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(x0, f(z0, z1))) → c7(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(x0, g(z0))) → c7(F(proper(x0), g(proper(z0))), PROPER(x0), PROPER(g(z0)))
PROPER(f(f(z0, z1), x1)) → c7(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(g(z0), x1)) → c7(F(g(proper(z0)), proper(x1)), PROPER(g(z0)), PROPER(x1))
PROPER(g(f(z0, z1))) → c8(G(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
TOP(mark(f(z0, z1))) → c9(TOP(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
TOP(mark(g(z0))) → c9(TOP(g(proper(z0))), PROPER(g(z0)))
S tuples:
F(mark(z0), z1) → c3(F(z0, z1))
G(mark(z0)) → c5(G(z0))
PROPER(f(x0, f(z0, z1))) → c7(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(x0, g(z0))) → c7(F(proper(x0), g(proper(z0))), PROPER(x0), PROPER(g(z0)))
PROPER(f(f(z0, z1), x1)) → c7(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(g(z0), x1)) → c7(F(g(proper(z0)), proper(x1)), PROPER(g(z0)), PROPER(x1))
PROPER(g(f(z0, z1))) → c8(G(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
K tuples:
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(ok(z0)) → c6(G(z0))
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
F, G, TOP, ACTIVE, PROPER
Compound Symbols:
c3, c4, c5, c6, c10, c, c1, c2, c7, c8, c9
(37) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
ok(
z0)) →
c10(
TOP(
active(
z0)),
ACTIVE(
z0)) by
TOP(ok(f(g(z0), z1))) → c10(TOP(mark(f(z0, f(g(z0), z1)))), ACTIVE(f(g(z0), z1)))
TOP(ok(f(z0, z1))) → c10(TOP(f(active(z0), z1)), ACTIVE(f(z0, z1)))
TOP(ok(g(z0))) → c10(TOP(g(active(z0))), ACTIVE(g(z0)))
TOP(ok(x0)) → c10
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
ACTIVE(f(f(g(z0), z1), x1)) → c1(F(mark(f(z0, f(g(z0), z1))), x1), ACTIVE(f(g(z0), z1)))
ACTIVE(f(f(z0, z1), x1)) → c1(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(z0), x1)) → c1(F(g(active(z0)), x1), ACTIVE(g(z0)))
ACTIVE(g(f(g(z0), z1))) → c2(G(mark(f(z0, f(g(z0), z1)))), ACTIVE(f(g(z0), z1)))
ACTIVE(g(f(z0, z1))) → c2(G(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(g(g(z0))) → c2(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(x0, f(z0, z1))) → c7(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(x0, g(z0))) → c7(F(proper(x0), g(proper(z0))), PROPER(x0), PROPER(g(z0)))
PROPER(f(f(z0, z1), x1)) → c7(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(g(z0), x1)) → c7(F(g(proper(z0)), proper(x1)), PROPER(g(z0)), PROPER(x1))
PROPER(g(f(z0, z1))) → c8(G(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
TOP(mark(f(z0, z1))) → c9(TOP(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
TOP(mark(g(z0))) → c9(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(g(z0), z1))) → c10(TOP(mark(f(z0, f(g(z0), z1)))), ACTIVE(f(g(z0), z1)))
TOP(ok(f(z0, z1))) → c10(TOP(f(active(z0), z1)), ACTIVE(f(z0, z1)))
TOP(ok(g(z0))) → c10(TOP(g(active(z0))), ACTIVE(g(z0)))
TOP(ok(x0)) → c10
S tuples:
F(mark(z0), z1) → c3(F(z0, z1))
G(mark(z0)) → c5(G(z0))
PROPER(f(x0, f(z0, z1))) → c7(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(x0, g(z0))) → c7(F(proper(x0), g(proper(z0))), PROPER(x0), PROPER(g(z0)))
PROPER(f(f(z0, z1), x1)) → c7(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(g(z0), x1)) → c7(F(g(proper(z0)), proper(x1)), PROPER(g(z0)), PROPER(x1))
PROPER(g(f(z0, z1))) → c8(G(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
K tuples:
TOP(ok(z0)) → c10(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(g(z0), z1)) → c(G(z0))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(ok(z0)) → c6(G(z0))
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
F, G, ACTIVE, PROPER, TOP
Compound Symbols:
c3, c4, c5, c6, c, c1, c2, c7, c8, c9, c10, c10
(39) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
ACTIVE(f(g(z0), z1)) → c(G(z0))
ACTIVE(f(f(g(z0), z1), x1)) → c1(F(mark(f(z0, f(g(z0), z1))), x1), ACTIVE(f(g(z0), z1)))
ACTIVE(f(f(z0, z1), x1)) → c1(F(f(active(z0), z1), x1), ACTIVE(f(z0, z1)))
ACTIVE(f(g(z0), x1)) → c1(F(g(active(z0)), x1), ACTIVE(g(z0)))
ACTIVE(g(f(g(z0), z1))) → c2(G(mark(f(z0, f(g(z0), z1)))), ACTIVE(f(g(z0), z1)))
ACTIVE(g(f(z0, z1))) → c2(G(f(active(z0), z1)), ACTIVE(f(z0, z1)))
ACTIVE(g(g(z0))) → c2(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(x0, f(z0, z1))) → c7(F(proper(x0), f(proper(z0), proper(z1))), PROPER(x0), PROPER(f(z0, z1)))
PROPER(f(x0, g(z0))) → c7(F(proper(x0), g(proper(z0))), PROPER(x0), PROPER(g(z0)))
PROPER(f(f(z0, z1), x1)) → c7(F(f(proper(z0), proper(z1)), proper(x1)), PROPER(f(z0, z1)), PROPER(x1))
PROPER(f(g(z0), x1)) → c7(F(g(proper(z0)), proper(x1)), PROPER(g(z0)), PROPER(x1))
PROPER(g(f(z0, z1))) → c8(G(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
PROPER(g(g(z0))) → c8(G(g(proper(z0))), PROPER(g(z0)))
TOP(mark(f(z0, z1))) → c9(TOP(f(proper(z0), proper(z1))), PROPER(f(z0, z1)))
TOP(mark(g(z0))) → c9(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(g(z0), z1))) → c10(TOP(mark(f(z0, f(g(z0), z1)))), ACTIVE(f(g(z0), z1)))
TOP(ok(f(z0, z1))) → c10(TOP(f(active(z0), z1)), ACTIVE(f(z0, z1)))
TOP(ok(g(z0))) → c10(TOP(g(active(z0))), ACTIVE(g(z0)))
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
TOP(ok(x0)) → c10
S tuples:
F(mark(z0), z1) → c3(F(z0, z1))
G(mark(z0)) → c5(G(z0))
K tuples:
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(ok(z0)) → c6(G(z0))
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
F, G, TOP
Compound Symbols:
c3, c4, c5, c6, c10
(41) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
TOP(ok(x0)) → c10
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
S tuples:
F(mark(z0), z1) → c3(F(z0, z1))
G(mark(z0)) → c5(G(z0))
K tuples:
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(ok(z0)) → c6(G(z0))
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
F, G
Compound Symbols:
c3, c4, c5, c6
(43) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(mark(z0)) → c5(G(z0))
We considered the (Usable) Rules:none
And the Tuples:
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = [2]x2
POL(G(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
S tuples:
F(mark(z0), z1) → c3(F(z0, z1))
K tuples:
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(ok(z0)) → c6(G(z0))
G(mark(z0)) → c5(G(z0))
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
F, G
Compound Symbols:
c3, c4, c5, c6
(45) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(mark(z0), z1) → c3(F(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = x1
POL(G(x1)) = 0
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(g(z0), z1)) → mark(f(z0, f(g(z0), z1)))
active(f(z0, z1)) → f(active(z0), z1)
active(g(z0)) → g(active(z0))
f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0, z1)) → f(proper(z0), proper(z1))
proper(g(z0)) → g(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0), z1) → c3(F(z0, z1))
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(mark(z0)) → c5(G(z0))
G(ok(z0)) → c6(G(z0))
S tuples:none
K tuples:
F(ok(z0), ok(z1)) → c4(F(z0, z1))
G(ok(z0)) → c6(G(z0))
G(mark(z0)) → c5(G(z0))
F(mark(z0), z1) → c3(F(z0, z1))
Defined Rule Symbols:
active, f, g, proper, top
Defined Pair Symbols:
F, G
Compound Symbols:
c3, c4, c5, c6
(47) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(48) BOUNDS(O(1), O(1))