We consider the following Problem:

  Strict Trs:
    {  a__minus(0(), Y) -> 0()
     , a__minus(s(X), s(Y)) -> a__minus(X, Y)
     , a__geq(X, 0()) -> true()
     , a__geq(0(), s(Y)) -> false()
     , a__geq(s(X), s(Y)) -> a__geq(X, Y)
     , a__div(0(), s(Y)) -> 0()
     , a__div(s(X), s(Y)) ->
       a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
     , a__if(true(), X, Y) -> mark(X)
     , a__if(false(), X, Y) -> mark(Y)
     , mark(minus(X1, X2)) -> a__minus(X1, X2)
     , mark(geq(X1, X2)) -> a__geq(X1, X2)
     , mark(div(X1, X2)) -> a__div(mark(X1), X2)
     , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
     , mark(0()) -> 0()
     , mark(s(X)) -> s(mark(X))
     , mark(true()) -> true()
     , mark(false()) -> false()
     , a__minus(X1, X2) -> minus(X1, X2)
     , a__geq(X1, X2) -> geq(X1, X2)
     , a__div(X1, X2) -> div(X1, X2)
     , a__if(X1, X2, X3) -> if(X1, X2, X3)}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  We consider the following Problem:
  
    Strict Trs:
      {  a__minus(0(), Y) -> 0()
       , a__minus(s(X), s(Y)) -> a__minus(X, Y)
       , a__geq(X, 0()) -> true()
       , a__geq(0(), s(Y)) -> false()
       , a__geq(s(X), s(Y)) -> a__geq(X, Y)
       , a__div(0(), s(Y)) -> 0()
       , a__div(s(X), s(Y)) ->
         a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
       , a__if(true(), X, Y) -> mark(X)
       , a__if(false(), X, Y) -> mark(Y)
       , mark(minus(X1, X2)) -> a__minus(X1, X2)
       , mark(geq(X1, X2)) -> a__geq(X1, X2)
       , mark(div(X1, X2)) -> a__div(mark(X1), X2)
       , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
       , mark(0()) -> 0()
       , mark(s(X)) -> s(mark(X))
       , mark(true()) -> true()
       , mark(false()) -> false()
       , a__minus(X1, X2) -> minus(X1, X2)
       , a__geq(X1, X2) -> geq(X1, X2)
       , a__div(X1, X2) -> div(X1, X2)
       , a__if(X1, X2, X3) -> if(X1, X2, X3)}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component:
      {  a__minus(0(), Y) -> 0()
       , a__geq(X, 0()) -> true()
       , a__geq(0(), s(Y)) -> false()
       , a__div(0(), s(Y)) -> 0()
       , mark(0()) -> 0()
       , mark(true()) -> true()
       , mark(false()) -> false()
       , a__minus(X1, X2) -> minus(X1, X2)
       , a__geq(X1, X2) -> geq(X1, X2)
       , a__div(X1, X2) -> div(X1, X2)}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(a__minus) = {}, Uargs(s) = {1}, Uargs(a__geq) = {},
        Uargs(a__div) = {1}, Uargs(a__if) = {1}, Uargs(div) = {},
        Uargs(minus) = {}, Uargs(mark) = {}, Uargs(geq) = {},
        Uargs(if) = {}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       a__minus(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                          [0 0]      [0 0]      [1]
       0() = [0]
             [0]
       s(x1) = [1 2] x1 + [0]
               [0 0]      [1]
       a__geq(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                        [0 0]      [0 0]      [1]
       true() = [0]
                [0]
       false() = [0]
                 [0]
       a__div(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                        [0 0]      [0 0]      [1]
       a__if(x1, x2, x3) = [1 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                           [0 0]      [0 0]      [0 0]      [1]
       div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                     [0 0]      [0 0]      [0]
       minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                       [0 0]      [0 0]      [0]
       mark(x1) = [0 0] x1 + [1]
                  [0 0]      [1]
       geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                     [0 0]      [0 0]      [0]
       if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                        [0 0]      [0 0]      [0 0]      [0]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  a__minus(s(X), s(Y)) -> a__minus(X, Y)
         , a__geq(s(X), s(Y)) -> a__geq(X, Y)
         , a__div(s(X), s(Y)) ->
           a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
         , a__if(true(), X, Y) -> mark(X)
         , a__if(false(), X, Y) -> mark(Y)
         , mark(minus(X1, X2)) -> a__minus(X1, X2)
         , mark(geq(X1, X2)) -> a__geq(X1, X2)
         , mark(div(X1, X2)) -> a__div(mark(X1), X2)
         , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
         , mark(s(X)) -> s(mark(X))
         , a__if(X1, X2, X3) -> if(X1, X2, X3)}
      Weak Trs:
        {  a__minus(0(), Y) -> 0()
         , a__geq(X, 0()) -> true()
         , a__geq(0(), s(Y)) -> false()
         , a__div(0(), s(Y)) -> 0()
         , mark(0()) -> 0()
         , mark(true()) -> true()
         , mark(false()) -> false()
         , a__minus(X1, X2) -> minus(X1, X2)
         , a__geq(X1, X2) -> geq(X1, X2)
         , a__div(X1, X2) -> div(X1, X2)}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component: {mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(a__minus) = {}, Uargs(s) = {1}, Uargs(a__geq) = {},
          Uargs(a__div) = {1}, Uargs(a__if) = {1}, Uargs(div) = {},
          Uargs(minus) = {}, Uargs(mark) = {}, Uargs(geq) = {},
          Uargs(if) = {}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         a__minus(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                            [0 0]      [0 0]      [1]
         0() = [0]
               [0]
         s(x1) = [1 0] x1 + [0]
                 [0 0]      [2]
         a__geq(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                          [0 0]      [0 0]      [1]
         true() = [0]
                  [0]
         false() = [0]
                   [0]
         a__div(x1, x2) = [1 0] x1 + [0 1] x2 + [1]
                          [0 0]      [0 0]      [1]
         a__if(x1, x2, x3) = [1 0] x1 + [0 0] x2 + [1 0] x3 + [0]
                             [0 0]      [1 0]      [0 0]      [1]
         div(x1, x2) = [1 0] x1 + [0 1] x2 + [0]
                       [0 0]      [0 0]      [0]
         minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                         [0 0]      [0 0]      [0]
         mark(x1) = [1 0] x1 + [1]
                    [0 1]      [1]
         geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                       [0 0]      [0 0]      [0]
         if(x1, x2, x3) = [1 0] x1 + [0 0] x2 + [1 0] x3 + [2]
                          [0 0]      [1 0]      [0 0]      [0]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  a__minus(s(X), s(Y)) -> a__minus(X, Y)
           , a__geq(s(X), s(Y)) -> a__geq(X, Y)
           , a__div(s(X), s(Y)) ->
             a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
           , a__if(true(), X, Y) -> mark(X)
           , a__if(false(), X, Y) -> mark(Y)
           , mark(minus(X1, X2)) -> a__minus(X1, X2)
           , mark(geq(X1, X2)) -> a__geq(X1, X2)
           , mark(div(X1, X2)) -> a__div(mark(X1), X2)
           , mark(s(X)) -> s(mark(X))
           , a__if(X1, X2, X3) -> if(X1, X2, X3)}
        Weak Trs:
          {  mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
           , a__minus(0(), Y) -> 0()
           , a__geq(X, 0()) -> true()
           , a__geq(0(), s(Y)) -> false()
           , a__div(0(), s(Y)) -> 0()
           , mark(0()) -> 0()
           , mark(true()) -> true()
           , mark(false()) -> false()
           , a__minus(X1, X2) -> minus(X1, X2)
           , a__geq(X1, X2) -> geq(X1, X2)
           , a__div(X1, X2) -> div(X1, X2)}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component: {mark(geq(X1, X2)) -> a__geq(X1, X2)}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(a__minus) = {}, Uargs(s) = {1}, Uargs(a__geq) = {},
            Uargs(a__div) = {1}, Uargs(a__if) = {1}, Uargs(div) = {},
            Uargs(minus) = {}, Uargs(mark) = {}, Uargs(geq) = {},
            Uargs(if) = {}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           a__minus(x1, x2) = [0 0] x1 + [0 0] x2 + [3]
                              [0 0]      [0 0]      [3]
           0() = [3]
                 [3]
           s(x1) = [1 0] x1 + [0]
                   [0 0]      [2]
           a__geq(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                            [0 0]      [0 0]      [1]
           true() = [0]
                    [0]
           false() = [0]
                     [0]
           a__div(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                            [1 1]      [0 1]      [1]
           a__if(x1, x2, x3) = [1 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                               [0 0]      [0 0]      [0 0]      [1]
           div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                         [0 0]      [0 0]      [0]
           minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                           [0 0]      [0 0]      [0]
           mark(x1) = [0 0] x1 + [3]
                      [1 0]      [1]
           geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                         [0 0]      [0 0]      [0]
           if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                            [0 0]      [0 0]      [0 0]      [0]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  a__minus(s(X), s(Y)) -> a__minus(X, Y)
             , a__geq(s(X), s(Y)) -> a__geq(X, Y)
             , a__div(s(X), s(Y)) ->
               a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
             , a__if(true(), X, Y) -> mark(X)
             , a__if(false(), X, Y) -> mark(Y)
             , mark(minus(X1, X2)) -> a__minus(X1, X2)
             , mark(div(X1, X2)) -> a__div(mark(X1), X2)
             , mark(s(X)) -> s(mark(X))
             , a__if(X1, X2, X3) -> if(X1, X2, X3)}
          Weak Trs:
            {  mark(geq(X1, X2)) -> a__geq(X1, X2)
             , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
             , a__minus(0(), Y) -> 0()
             , a__geq(X, 0()) -> true()
             , a__geq(0(), s(Y)) -> false()
             , a__div(0(), s(Y)) -> 0()
             , mark(0()) -> 0()
             , mark(true()) -> true()
             , mark(false()) -> false()
             , a__minus(X1, X2) -> minus(X1, X2)
             , a__geq(X1, X2) -> geq(X1, X2)
             , a__div(X1, X2) -> div(X1, X2)}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component: {mark(minus(X1, X2)) -> a__minus(X1, X2)}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            The following argument positions are usable:
              Uargs(a__minus) = {}, Uargs(s) = {1}, Uargs(a__geq) = {},
              Uargs(a__div) = {1}, Uargs(a__if) = {1}, Uargs(div) = {},
              Uargs(minus) = {}, Uargs(mark) = {}, Uargs(geq) = {},
              Uargs(if) = {}
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             a__minus(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                                [0 0]      [0 0]      [1]
             0() = [0]
                   [0]
             s(x1) = [1 2] x1 + [0]
                     [0 0]      [0]
             a__geq(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                              [0 0]      [0 0]      [1]
             true() = [0]
                      [0]
             false() = [0]
                       [0]
             a__div(x1, x2) = [1 1] x1 + [0 0] x2 + [1]
                              [0 0]      [0 0]      [1]
             a__if(x1, x2, x3) = [1 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [1]
             div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                           [0 0]      [0 0]      [0]
             minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
             mark(x1) = [0 0] x1 + [3]
                        [0 0]      [1]
             geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                           [0 0]      [0 0]      [0]
             if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                              [0 0]      [0 0]      [0 0]      [0]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Strict Trs:
              {  a__minus(s(X), s(Y)) -> a__minus(X, Y)
               , a__geq(s(X), s(Y)) -> a__geq(X, Y)
               , a__div(s(X), s(Y)) ->
                 a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
               , a__if(true(), X, Y) -> mark(X)
               , a__if(false(), X, Y) -> mark(Y)
               , mark(div(X1, X2)) -> a__div(mark(X1), X2)
               , mark(s(X)) -> s(mark(X))
               , a__if(X1, X2, X3) -> if(X1, X2, X3)}
            Weak Trs:
              {  mark(minus(X1, X2)) -> a__minus(X1, X2)
               , mark(geq(X1, X2)) -> a__geq(X1, X2)
               , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
               , a__minus(0(), Y) -> 0()
               , a__geq(X, 0()) -> true()
               , a__geq(0(), s(Y)) -> false()
               , a__div(0(), s(Y)) -> 0()
               , mark(0()) -> 0()
               , mark(true()) -> true()
               , mark(false()) -> false()
               , a__minus(X1, X2) -> minus(X1, X2)
               , a__geq(X1, X2) -> geq(X1, X2)
               , a__div(X1, X2) -> div(X1, X2)}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            The weightgap principle applies, where following rules are oriented strictly:
            
            TRS Component:
              {a__div(s(X), s(Y)) ->
               a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())}
            
            Interpretation of nonconstant growth:
            -------------------------------------
              The following argument positions are usable:
                Uargs(a__minus) = {}, Uargs(s) = {1}, Uargs(a__geq) = {},
                Uargs(a__div) = {1}, Uargs(a__if) = {1}, Uargs(div) = {},
                Uargs(minus) = {}, Uargs(mark) = {}, Uargs(geq) = {},
                Uargs(if) = {}
              We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
              Interpretation Functions:
               a__minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
               0() = [0]
                     [0]
               s(x1) = [1 2] x1 + [0]
                       [0 0]      [1]
               a__geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
               true() = [0]
                        [0]
               false() = [0]
                         [0]
               a__div(x1, x2) = [1 1] x1 + [0 0] x2 + [0]
                                [0 0]      [0 1]      [0]
               a__if(x1, x2, x3) = [1 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
               div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
               minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
               mark(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
               geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
               if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
            
            The strictly oriented rules are moved into the weak component.
            
            We consider the following Problem:
            
              Strict Trs:
                {  a__minus(s(X), s(Y)) -> a__minus(X, Y)
                 , a__geq(s(X), s(Y)) -> a__geq(X, Y)
                 , a__if(true(), X, Y) -> mark(X)
                 , a__if(false(), X, Y) -> mark(Y)
                 , mark(div(X1, X2)) -> a__div(mark(X1), X2)
                 , mark(s(X)) -> s(mark(X))
                 , a__if(X1, X2, X3) -> if(X1, X2, X3)}
              Weak Trs:
                {  a__div(s(X), s(Y)) ->
                   a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
                 , mark(minus(X1, X2)) -> a__minus(X1, X2)
                 , mark(geq(X1, X2)) -> a__geq(X1, X2)
                 , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
                 , a__minus(0(), Y) -> 0()
                 , a__geq(X, 0()) -> true()
                 , a__geq(0(), s(Y)) -> false()
                 , a__div(0(), s(Y)) -> 0()
                 , mark(0()) -> 0()
                 , mark(true()) -> true()
                 , mark(false()) -> false()
                 , a__minus(X1, X2) -> minus(X1, X2)
                 , a__geq(X1, X2) -> geq(X1, X2)
                 , a__div(X1, X2) -> div(X1, X2)}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(?,O(n^1))
            
            Proof:
              The weightgap principle applies, where following rules are oriented strictly:
              
              TRS Component: {a__geq(s(X), s(Y)) -> a__geq(X, Y)}
              
              Interpretation of nonconstant growth:
              -------------------------------------
                The following argument positions are usable:
                  Uargs(a__minus) = {}, Uargs(s) = {1}, Uargs(a__geq) = {},
                  Uargs(a__div) = {1}, Uargs(a__if) = {1}, Uargs(div) = {},
                  Uargs(minus) = {}, Uargs(mark) = {}, Uargs(geq) = {},
                  Uargs(if) = {}
                We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                Interpretation Functions:
                 a__minus(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                                    [0 0]      [0 0]      [3]
                 0() = [0]
                       [2]
                 s(x1) = [1 0] x1 + [0]
                         [0 1]      [2]
                 a__geq(x1, x2) = [0 0] x1 + [0 2] x2 + [0]
                                  [0 0]      [0 0]      [3]
                 true() = [1]
                          [3]
                 false() = [1]
                           [3]
                 a__div(x1, x2) = [1 0] x1 + [1 2] x2 + [0]
                                  [0 1]      [0 0]      [1]
                 a__if(x1, x2, x3) = [1 0] x1 + [0 0] x2 + [1 1] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                 div(x1, x2) = [1 0] x1 + [1 2] x2 + [0]
                               [0 1]      [0 0]      [0]
                 minus(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                                 [0 0]      [0 0]      [3]
                 mark(x1) = [1 1] x1 + [0]
                            [0 0]      [3]
                 geq(x1, x2) = [0 0] x1 + [0 2] x2 + [0]
                               [0 0]      [0 0]      [0]
                 if(x1, x2, x3) = [1 0] x1 + [0 0] x2 + [1 0] x3 + [2]
                                  [0 1]      [0 0]      [0 1]      [3]
              
              The strictly oriented rules are moved into the weak component.
              
              We consider the following Problem:
              
                Strict Trs:
                  {  a__minus(s(X), s(Y)) -> a__minus(X, Y)
                   , a__if(true(), X, Y) -> mark(X)
                   , a__if(false(), X, Y) -> mark(Y)
                   , mark(div(X1, X2)) -> a__div(mark(X1), X2)
                   , mark(s(X)) -> s(mark(X))
                   , a__if(X1, X2, X3) -> if(X1, X2, X3)}
                Weak Trs:
                  {  a__geq(s(X), s(Y)) -> a__geq(X, Y)
                   , a__div(s(X), s(Y)) ->
                     a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
                   , mark(minus(X1, X2)) -> a__minus(X1, X2)
                   , mark(geq(X1, X2)) -> a__geq(X1, X2)
                   , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
                   , a__minus(0(), Y) -> 0()
                   , a__geq(X, 0()) -> true()
                   , a__geq(0(), s(Y)) -> false()
                   , a__div(0(), s(Y)) -> 0()
                   , mark(0()) -> 0()
                   , mark(true()) -> true()
                   , mark(false()) -> false()
                   , a__minus(X1, X2) -> minus(X1, X2)
                   , a__geq(X1, X2) -> geq(X1, X2)
                   , a__div(X1, X2) -> div(X1, X2)}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(?,O(n^1))
              
              Proof:
                The weightgap principle applies, where following rules are oriented strictly:
                
                TRS Component: {a__if(false(), X, Y) -> mark(Y)}
                
                Interpretation of nonconstant growth:
                -------------------------------------
                  The following argument positions are usable:
                    Uargs(a__minus) = {}, Uargs(s) = {1}, Uargs(a__geq) = {},
                    Uargs(a__div) = {1}, Uargs(a__if) = {1}, Uargs(div) = {},
                    Uargs(minus) = {}, Uargs(mark) = {}, Uargs(geq) = {},
                    Uargs(if) = {}
                  We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                  Interpretation Functions:
                   a__minus(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                                      [0 0]      [0 0]      [2]
                   0() = [0]
                         [0]
                   s(x1) = [1 0] x1 + [0]
                           [0 1]      [1]
                   a__geq(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                                    [0 0]      [0 0]      [2]
                   true() = [0]
                            [0]
                   false() = [1]
                             [2]
                   a__div(x1, x2) = [1 2] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 1]      [1]
                   a__if(x1, x2, x3) = [1 0] x1 + [0 0] x2 + [1 2] x3 + [0]
                                       [0 1]      [0 0]      [0 0]      [0]
                   div(x1, x2) = [1 2] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [1]
                   minus(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                                   [0 0]      [0 0]      [2]
                   mark(x1) = [1 1] x1 + [0]
                              [0 0]      [2]
                   geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [2]
                   if(x1, x2, x3) = [1 0] x1 + [0 0] x2 + [1 2] x3 + [3]
                                    [0 1]      [0 0]      [0 0]      [2]
                
                The strictly oriented rules are moved into the weak component.
                
                We consider the following Problem:
                
                  Strict Trs:
                    {  a__minus(s(X), s(Y)) -> a__minus(X, Y)
                     , a__if(true(), X, Y) -> mark(X)
                     , mark(div(X1, X2)) -> a__div(mark(X1), X2)
                     , mark(s(X)) -> s(mark(X))
                     , a__if(X1, X2, X3) -> if(X1, X2, X3)}
                  Weak Trs:
                    {  a__if(false(), X, Y) -> mark(Y)
                     , a__geq(s(X), s(Y)) -> a__geq(X, Y)
                     , a__div(s(X), s(Y)) ->
                       a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
                     , mark(minus(X1, X2)) -> a__minus(X1, X2)
                     , mark(geq(X1, X2)) -> a__geq(X1, X2)
                     , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
                     , a__minus(0(), Y) -> 0()
                     , a__geq(X, 0()) -> true()
                     , a__geq(0(), s(Y)) -> false()
                     , a__div(0(), s(Y)) -> 0()
                     , mark(0()) -> 0()
                     , mark(true()) -> true()
                     , mark(false()) -> false()
                     , a__minus(X1, X2) -> minus(X1, X2)
                     , a__geq(X1, X2) -> geq(X1, X2)
                     , a__div(X1, X2) -> div(X1, X2)}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(?,O(n^1))
                
                Proof:
                  The weightgap principle applies, where following rules are oriented strictly:
                  
                  TRS Component: {a__minus(s(X), s(Y)) -> a__minus(X, Y)}
                  
                  Interpretation of nonconstant growth:
                  -------------------------------------
                    The following argument positions are usable:
                      Uargs(a__minus) = {}, Uargs(s) = {1}, Uargs(a__geq) = {},
                      Uargs(a__div) = {1}, Uargs(a__if) = {1}, Uargs(div) = {},
                      Uargs(minus) = {}, Uargs(mark) = {}, Uargs(geq) = {},
                      Uargs(if) = {}
                    We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                    Interpretation Functions:
                     a__minus(x1, x2) = [1 1] x1 + [0 0] x2 + [3]
                                        [0 0]      [0 0]      [0]
                     0() = [0]
                           [0]
                     s(x1) = [1 0] x1 + [0]
                             [0 1]      [1]
                     a__geq(x1, x2) = [0 0] x1 + [0 0] x2 + [3]
                                      [0 0]      [0 0]      [1]
                     true() = [3]
                              [1]
                     false() = [0]
                               [0]
                     a__div(x1, x2) = [1 0] x1 + [0 1] x2 + [2]
                                      [0 1]      [0 1]      [3]
                     a__if(x1, x2, x3) = [1 0] x1 + [0 0] x2 + [1 1] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [1]
                     div(x1, x2) = [1 0] x1 + [0 1] x2 + [0]
                                   [0 1]      [0 1]      [0]
                     minus(x1, x2) = [1 1] x1 + [0 0] x2 + [3]
                                     [0 0]      [0 0]      [0]
                     mark(x1) = [1 1] x1 + [0]
                                [0 0]      [1]
                     geq(x1, x2) = [0 0] x1 + [0 0] x2 + [3]
                                   [0 0]      [0 0]      [1]
                     if(x1, x2, x3) = [1 0] x1 + [0 0] x2 + [1 0] x3 + [2]
                                      [0 1]      [0 0]      [0 1]      [2]
                  
                  The strictly oriented rules are moved into the weak component.
                  
                  We consider the following Problem:
                  
                    Strict Trs:
                      {  a__if(true(), X, Y) -> mark(X)
                       , mark(div(X1, X2)) -> a__div(mark(X1), X2)
                       , mark(s(X)) -> s(mark(X))
                       , a__if(X1, X2, X3) -> if(X1, X2, X3)}
                    Weak Trs:
                      {  a__minus(s(X), s(Y)) -> a__minus(X, Y)
                       , a__if(false(), X, Y) -> mark(Y)
                       , a__geq(s(X), s(Y)) -> a__geq(X, Y)
                       , a__div(s(X), s(Y)) ->
                         a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
                       , mark(minus(X1, X2)) -> a__minus(X1, X2)
                       , mark(geq(X1, X2)) -> a__geq(X1, X2)
                       , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
                       , a__minus(0(), Y) -> 0()
                       , a__geq(X, 0()) -> true()
                       , a__geq(0(), s(Y)) -> false()
                       , a__div(0(), s(Y)) -> 0()
                       , mark(0()) -> 0()
                       , mark(true()) -> true()
                       , mark(false()) -> false()
                       , a__minus(X1, X2) -> minus(X1, X2)
                       , a__geq(X1, X2) -> geq(X1, X2)
                       , a__div(X1, X2) -> div(X1, X2)}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(?,O(n^1))
                  
                  Proof:
                    The weightgap principle applies, where following rules are oriented strictly:
                    
                    TRS Component: {a__if(true(), X, Y) -> mark(X)}
                    
                    Interpretation of nonconstant growth:
                    -------------------------------------
                      The following argument positions are usable:
                        Uargs(a__minus) = {}, Uargs(s) = {1}, Uargs(a__geq) = {},
                        Uargs(a__div) = {1}, Uargs(a__if) = {1}, Uargs(div) = {},
                        Uargs(minus) = {}, Uargs(mark) = {}, Uargs(geq) = {},
                        Uargs(if) = {}
                      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                      Interpretation Functions:
                       a__minus(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                                          [0 0]      [0 0]      [1]
                       0() = [0]
                             [0]
                       s(x1) = [1 0] x1 + [1]
                               [0 1]      [0]
                       a__geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 0]      [0 0]      [2]
                       true() = [0]
                                [2]
                       false() = [0]
                                 [2]
                       a__div(x1, x2) = [1 0] x1 + [0 0] x2 + [3]
                                        [0 1]      [0 0]      [3]
                       a__if(x1, x2, x3) = [1 2] x1 + [0 2] x2 + [0 2] x3 + [0]
                                           [0 0]      [0 0]      [0 0]      [2]
                       div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 1]      [0 0]      [0]
                       minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                       [0 0]      [0 0]      [0]
                       mark(x1) = [0 2] x1 + [2]
                                  [0 0]      [2]
                       geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                       if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                        [0 1]      [0 1]      [0 1]      [3]
                    
                    The strictly oriented rules are moved into the weak component.
                    
                    We consider the following Problem:
                    
                      Strict Trs:
                        {  mark(div(X1, X2)) -> a__div(mark(X1), X2)
                         , mark(s(X)) -> s(mark(X))
                         , a__if(X1, X2, X3) -> if(X1, X2, X3)}
                      Weak Trs:
                        {  a__if(true(), X, Y) -> mark(X)
                         , a__minus(s(X), s(Y)) -> a__minus(X, Y)
                         , a__if(false(), X, Y) -> mark(Y)
                         , a__geq(s(X), s(Y)) -> a__geq(X, Y)
                         , a__div(s(X), s(Y)) ->
                           a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
                         , mark(minus(X1, X2)) -> a__minus(X1, X2)
                         , mark(geq(X1, X2)) -> a__geq(X1, X2)
                         , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
                         , a__minus(0(), Y) -> 0()
                         , a__geq(X, 0()) -> true()
                         , a__geq(0(), s(Y)) -> false()
                         , a__div(0(), s(Y)) -> 0()
                         , mark(0()) -> 0()
                         , mark(true()) -> true()
                         , mark(false()) -> false()
                         , a__minus(X1, X2) -> minus(X1, X2)
                         , a__geq(X1, X2) -> geq(X1, X2)
                         , a__div(X1, X2) -> div(X1, X2)}
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(?,O(n^1))
                    
                    Proof:
                      The weightgap principle applies, where following rules are oriented strictly:
                      
                      TRS Component: {a__if(X1, X2, X3) -> if(X1, X2, X3)}
                      
                      Interpretation of nonconstant growth:
                      -------------------------------------
                        The following argument positions are usable:
                          Uargs(a__minus) = {}, Uargs(s) = {1}, Uargs(a__geq) = {},
                          Uargs(a__div) = {1}, Uargs(a__if) = {1}, Uargs(div) = {},
                          Uargs(minus) = {}, Uargs(mark) = {}, Uargs(geq) = {},
                          Uargs(if) = {}
                        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                        Interpretation Functions:
                         a__minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                            [0 0]      [0 0]      [0]
                         0() = [0]
                               [0]
                         s(x1) = [1 0] x1 + [1]
                                 [0 1]      [0]
                         a__geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                          [0 0]      [0 0]      [1]
                         true() = [0]
                                  [0]
                         false() = [0]
                                   [0]
                         a__div(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                          [0 1]      [0 0]      [3]
                         a__if(x1, x2, x3) = [1 0] x1 + [0 1] x2 + [0 1] x3 + [1]
                                             [0 1]      [0 1]      [0 1]      [2]
                         div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                       [0 1]      [0 0]      [0]
                         minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                         [0 0]      [0 0]      [0]
                         mark(x1) = [0 1] x1 + [0]
                                    [0 1]      [0]
                         geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                       [0 0]      [0 0]      [1]
                         if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                          [0 1]      [0 1]      [0 1]      [2]
                      
                      The strictly oriented rules are moved into the weak component.
                      
                      We consider the following Problem:
                      
                        Strict Trs:
                          {  mark(div(X1, X2)) -> a__div(mark(X1), X2)
                           , mark(s(X)) -> s(mark(X))}
                        Weak Trs:
                          {  a__if(X1, X2, X3) -> if(X1, X2, X3)
                           , a__if(true(), X, Y) -> mark(X)
                           , a__minus(s(X), s(Y)) -> a__minus(X, Y)
                           , a__if(false(), X, Y) -> mark(Y)
                           , a__geq(s(X), s(Y)) -> a__geq(X, Y)
                           , a__div(s(X), s(Y)) ->
                             a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
                           , mark(minus(X1, X2)) -> a__minus(X1, X2)
                           , mark(geq(X1, X2)) -> a__geq(X1, X2)
                           , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
                           , a__minus(0(), Y) -> 0()
                           , a__geq(X, 0()) -> true()
                           , a__geq(0(), s(Y)) -> false()
                           , a__div(0(), s(Y)) -> 0()
                           , mark(0()) -> 0()
                           , mark(true()) -> true()
                           , mark(false()) -> false()
                           , a__minus(X1, X2) -> minus(X1, X2)
                           , a__geq(X1, X2) -> geq(X1, X2)
                           , a__div(X1, X2) -> div(X1, X2)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(?,O(n^1))
                      
                      Proof:
                        The weightgap principle applies, where following rules are oriented strictly:
                        
                        TRS Component: {mark(div(X1, X2)) -> a__div(mark(X1), X2)}
                        
                        Interpretation of nonconstant growth:
                        -------------------------------------
                          The following argument positions are usable:
                            Uargs(a__minus) = {}, Uargs(s) = {1}, Uargs(a__geq) = {},
                            Uargs(a__div) = {1}, Uargs(a__if) = {1}, Uargs(div) = {},
                            Uargs(minus) = {}, Uargs(mark) = {}, Uargs(geq) = {},
                            Uargs(if) = {}
                          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                          Interpretation Functions:
                           a__minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                              [0 0]      [0 0]      [0]
                           0() = [0]
                                 [0]
                           s(x1) = [1 0] x1 + [1]
                                   [0 1]      [0]
                           a__geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                            [0 0]      [0 0]      [0]
                           true() = [0]
                                    [0]
                           false() = [0]
                                     [0]
                           a__div(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                                            [0 1]      [0 0]      [2]
                           a__if(x1, x2, x3) = [1 0] x1 + [0 1] x2 + [0 1] x3 + [0]
                                               [0 1]      [0 1]      [0 1]      [0]
                           div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                         [0 1]      [0 0]      [2]
                           minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                           [0 0]      [0 0]      [0]
                           mark(x1) = [0 1] x1 + [0]
                                      [0 1]      [0]
                           geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                         [0 0]      [0 0]      [0]
                           if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                            [0 1]      [0 1]      [0 1]      [0]
                        
                        The strictly oriented rules are moved into the weak component.
                        
                        We consider the following Problem:
                        
                          Strict Trs: {mark(s(X)) -> s(mark(X))}
                          Weak Trs:
                            {  mark(div(X1, X2)) -> a__div(mark(X1), X2)
                             , a__if(X1, X2, X3) -> if(X1, X2, X3)
                             , a__if(true(), X, Y) -> mark(X)
                             , a__minus(s(X), s(Y)) -> a__minus(X, Y)
                             , a__if(false(), X, Y) -> mark(Y)
                             , a__geq(s(X), s(Y)) -> a__geq(X, Y)
                             , a__div(s(X), s(Y)) ->
                               a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
                             , mark(minus(X1, X2)) -> a__minus(X1, X2)
                             , mark(geq(X1, X2)) -> a__geq(X1, X2)
                             , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
                             , a__minus(0(), Y) -> 0()
                             , a__geq(X, 0()) -> true()
                             , a__geq(0(), s(Y)) -> false()
                             , a__div(0(), s(Y)) -> 0()
                             , mark(0()) -> 0()
                             , mark(true()) -> true()
                             , mark(false()) -> false()
                             , a__minus(X1, X2) -> minus(X1, X2)
                             , a__geq(X1, X2) -> geq(X1, X2)
                             , a__div(X1, X2) -> div(X1, X2)}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(?,O(n^1))
                        
                        Proof:
                          We consider the following Problem:
                          
                            Strict Trs: {mark(s(X)) -> s(mark(X))}
                            Weak Trs:
                              {  mark(div(X1, X2)) -> a__div(mark(X1), X2)
                               , a__if(X1, X2, X3) -> if(X1, X2, X3)
                               , a__if(true(), X, Y) -> mark(X)
                               , a__minus(s(X), s(Y)) -> a__minus(X, Y)
                               , a__if(false(), X, Y) -> mark(Y)
                               , a__geq(s(X), s(Y)) -> a__geq(X, Y)
                               , a__div(s(X), s(Y)) ->
                                 a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0())
                               , mark(minus(X1, X2)) -> a__minus(X1, X2)
                               , mark(geq(X1, X2)) -> a__geq(X1, X2)
                               , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
                               , a__minus(0(), Y) -> 0()
                               , a__geq(X, 0()) -> true()
                               , a__geq(0(), s(Y)) -> false()
                               , a__div(0(), s(Y)) -> 0()
                               , mark(0()) -> 0()
                               , mark(true()) -> true()
                               , mark(false()) -> false()
                               , a__minus(X1, X2) -> minus(X1, X2)
                               , a__geq(X1, X2) -> geq(X1, X2)
                               , a__div(X1, X2) -> div(X1, X2)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(?,O(n^1))
                          
                          Proof:
                            The following argument positions are usable:
                              Uargs(a__minus) = {}, Uargs(s) = {1}, Uargs(a__geq) = {},
                              Uargs(a__div) = {1}, Uargs(a__if) = {1}, Uargs(div) = {},
                              Uargs(minus) = {}, Uargs(mark) = {}, Uargs(geq) = {},
                              Uargs(if) = {}
                            We have the following constructor-based EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                            Interpretation Functions:
                             a__minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                                [0 0]      [0 0]      [0]
                             0() = [0]
                                   [0]
                             s(x1) = [1 1] x1 + [0]
                                     [0 0]      [1]
                             a__geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                              [0 0]      [0 0]      [0]
                             true() = [0]
                                      [0]
                             false() = [0]
                                       [0]
                             a__div(x1, x2) = [1 3] x1 + [0 2] x2 + [0]
                                              [0 0]      [0 1]      [0]
                             a__if(x1, x2, x3) = [1 0] x1 + [3 2] x2 + [3 2] x3 + [0]
                                                 [0 1]      [0 1]      [0 1]      [0]
                             div(x1, x2) = [1 3] x1 + [0 0] x2 + [0]
                                           [0 0]      [0 1]      [0]
                             minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                             [0 0]      [0 0]      [0]
                             mark(x1) = [3 2] x1 + [0]
                                        [0 1]      [0]
                             geq(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                           [0 0]      [0 0]      [0]
                             if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [0]
                                              [0 1]      [0 1]      [0 1]      [0]

Hurray, we answered YES(?,O(n^1))