We consider the following Problem: Strict Trs: { app(nil(), YS) -> YS , app(cons(X), YS) -> cons(X) , from(X) -> cons(X) , zWadr(nil(), YS) -> nil() , zWadr(XS, nil()) -> nil() , zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X))) , prefix(L) -> cons(nil())} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { app(nil(), YS) -> YS , app(cons(X), YS) -> cons(X) , from(X) -> cons(X) , zWadr(nil(), YS) -> nil() , zWadr(XS, nil()) -> nil() , zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X))) , prefix(L) -> cons(nil())} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { from(X) -> cons(X) , zWadr(nil(), YS) -> nil() , zWadr(XS, nil()) -> nil()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(app) = {}, Uargs(cons) = {1}, Uargs(from) = {}, Uargs(zWadr) = {}, Uargs(prefix) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: app(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [1 0] [1] nil() = [0] [0] cons(x1) = [1 0] x1 + [0] [1 0] [0] from(x1) = [1 0] x1 + [2] [1 0] [0] zWadr(x1, x2) = [0 1] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] prefix(x1) = [0 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { app(nil(), YS) -> YS , app(cons(X), YS) -> cons(X) , zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X))) , prefix(L) -> cons(nil())} Weak Trs: { from(X) -> cons(X) , zWadr(nil(), YS) -> nil() , zWadr(XS, nil()) -> nil()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {prefix(L) -> cons(nil())} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(app) = {}, Uargs(cons) = {1}, Uargs(from) = {}, Uargs(zWadr) = {}, Uargs(prefix) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: app(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [1 0] [1] nil() = [0] [0] cons(x1) = [1 0] x1 + [0] [1 0] [0] from(x1) = [1 0] x1 + [0] [1 0] [0] zWadr(x1, x2) = [0 1] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] prefix(x1) = [0 0] x1 + [2] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { app(nil(), YS) -> YS , app(cons(X), YS) -> cons(X) , zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X)))} Weak Trs: { prefix(L) -> cons(nil()) , from(X) -> cons(X) , zWadr(nil(), YS) -> nil() , zWadr(XS, nil()) -> nil()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {app(nil(), YS) -> YS} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(app) = {}, Uargs(cons) = {1}, Uargs(from) = {}, Uargs(zWadr) = {}, Uargs(prefix) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: app(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] nil() = [0] [0] cons(x1) = [1 0] x1 + [0] [1 0] [0] from(x1) = [1 0] x1 + [0] [1 0] [0] zWadr(x1, x2) = [0 1] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] prefix(x1) = [0 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { app(cons(X), YS) -> cons(X) , zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X)))} Weak Trs: { app(nil(), YS) -> YS , prefix(L) -> cons(nil()) , from(X) -> cons(X) , zWadr(nil(), YS) -> nil() , zWadr(XS, nil()) -> nil()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(app) = {}, Uargs(cons) = {1}, Uargs(from) = {}, Uargs(zWadr) = {}, Uargs(prefix) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: app(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] nil() = [0] [0] cons(x1) = [1 0] x1 + [0] [1 0] [0] from(x1) = [1 0] x1 + [0] [1 0] [0] zWadr(x1, x2) = [0 1] x1 + [0 0] x2 + [3] [0 1] [0 0] [1] prefix(x1) = [0 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {app(cons(X), YS) -> cons(X)} Weak Trs: { zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X))) , app(nil(), YS) -> YS , prefix(L) -> cons(nil()) , from(X) -> cons(X) , zWadr(nil(), YS) -> nil() , zWadr(XS, nil()) -> nil()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {app(cons(X), YS) -> cons(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(app) = {}, Uargs(cons) = {1}, Uargs(from) = {}, Uargs(zWadr) = {}, Uargs(prefix) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: app(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [1 0] [0 1] [1] nil() = [0] [0] cons(x1) = [1 0] x1 + [0] [0 0] [1] from(x1) = [1 0] x1 + [0] [0 0] [2] zWadr(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] prefix(x1) = [0 0] x1 + [0] [0 0] [2] The strictly oriented rules are moved into the weak component. We consider the following Problem: Weak Trs: { app(cons(X), YS) -> cons(X) , zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X))) , app(nil(), YS) -> YS , prefix(L) -> cons(nil()) , from(X) -> cons(X) , zWadr(nil(), YS) -> nil() , zWadr(XS, nil()) -> nil()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { app(cons(X), YS) -> cons(X) , zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X))) , app(nil(), YS) -> YS , prefix(L) -> cons(nil()) , from(X) -> cons(X) , zWadr(nil(), YS) -> nil() , zWadr(XS, nil()) -> nil()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))