We consider the following Problem:

  Strict Trs:
    {  app(nil(), YS) -> YS
     , app(cons(X), YS) -> cons(X)
     , from(X) -> cons(X)
     , zWadr(nil(), YS) -> nil()
     , zWadr(XS, nil()) -> nil()
     , zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X)))
     , prefix(L) -> cons(nil())}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  We consider the following Problem:
  
    Strict Trs:
      {  app(nil(), YS) -> YS
       , app(cons(X), YS) -> cons(X)
       , from(X) -> cons(X)
       , zWadr(nil(), YS) -> nil()
       , zWadr(XS, nil()) -> nil()
       , zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X)))
       , prefix(L) -> cons(nil())}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component:
      {  from(X) -> cons(X)
       , zWadr(nil(), YS) -> nil()
       , zWadr(XS, nil()) -> nil()}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(app) = {}, Uargs(cons) = {1}, Uargs(from) = {},
        Uargs(zWadr) = {}, Uargs(prefix) = {}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       app(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                     [0 0]      [1 0]      [1]
       nil() = [0]
               [0]
       cons(x1) = [1 0] x1 + [0]
                  [1 0]      [0]
       from(x1) = [1 0] x1 + [2]
                  [1 0]      [0]
       zWadr(x1, x2) = [0 1] x1 + [0 0] x2 + [1]
                       [0 0]      [0 0]      [1]
       prefix(x1) = [0 0] x1 + [0]
                    [0 0]      [0]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  app(nil(), YS) -> YS
         , app(cons(X), YS) -> cons(X)
         , zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X)))
         , prefix(L) -> cons(nil())}
      Weak Trs:
        {  from(X) -> cons(X)
         , zWadr(nil(), YS) -> nil()
         , zWadr(XS, nil()) -> nil()}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component: {prefix(L) -> cons(nil())}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(app) = {}, Uargs(cons) = {1}, Uargs(from) = {},
          Uargs(zWadr) = {}, Uargs(prefix) = {}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         app(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                       [0 0]      [1 0]      [1]
         nil() = [0]
                 [0]
         cons(x1) = [1 0] x1 + [0]
                    [1 0]      [0]
         from(x1) = [1 0] x1 + [0]
                    [1 0]      [0]
         zWadr(x1, x2) = [0 1] x1 + [0 0] x2 + [1]
                         [0 0]      [0 0]      [1]
         prefix(x1) = [0 0] x1 + [2]
                      [0 0]      [0]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  app(nil(), YS) -> YS
           , app(cons(X), YS) -> cons(X)
           , zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X)))}
        Weak Trs:
          {  prefix(L) -> cons(nil())
           , from(X) -> cons(X)
           , zWadr(nil(), YS) -> nil()
           , zWadr(XS, nil()) -> nil()}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component: {app(nil(), YS) -> YS}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(app) = {}, Uargs(cons) = {1}, Uargs(from) = {},
            Uargs(zWadr) = {}, Uargs(prefix) = {}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           app(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                         [0 0]      [0 1]      [1]
           nil() = [0]
                   [0]
           cons(x1) = [1 0] x1 + [0]
                      [1 0]      [0]
           from(x1) = [1 0] x1 + [0]
                      [1 0]      [0]
           zWadr(x1, x2) = [0 1] x1 + [0 0] x2 + [1]
                           [0 0]      [0 0]      [1]
           prefix(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  app(cons(X), YS) -> cons(X)
             , zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X)))}
          Weak Trs:
            {  app(nil(), YS) -> YS
             , prefix(L) -> cons(nil())
             , from(X) -> cons(X)
             , zWadr(nil(), YS) -> nil()
             , zWadr(XS, nil()) -> nil()}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component: {zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X)))}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            The following argument positions are usable:
              Uargs(app) = {}, Uargs(cons) = {1}, Uargs(from) = {},
              Uargs(zWadr) = {}, Uargs(prefix) = {}
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             app(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                           [0 0]      [0 1]      [1]
             nil() = [0]
                     [0]
             cons(x1) = [1 0] x1 + [0]
                        [1 0]      [0]
             from(x1) = [1 0] x1 + [0]
                        [1 0]      [0]
             zWadr(x1, x2) = [0 1] x1 + [0 0] x2 + [3]
                             [0 1]      [0 0]      [1]
             prefix(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Strict Trs: {app(cons(X), YS) -> cons(X)}
            Weak Trs:
              {  zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X)))
               , app(nil(), YS) -> YS
               , prefix(L) -> cons(nil())
               , from(X) -> cons(X)
               , zWadr(nil(), YS) -> nil()
               , zWadr(XS, nil()) -> nil()}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            The weightgap principle applies, where following rules are oriented strictly:
            
            TRS Component: {app(cons(X), YS) -> cons(X)}
            
            Interpretation of nonconstant growth:
            -------------------------------------
              The following argument positions are usable:
                Uargs(app) = {}, Uargs(cons) = {1}, Uargs(from) = {},
                Uargs(zWadr) = {}, Uargs(prefix) = {}
              We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
              Interpretation Functions:
               app(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                             [1 0]      [0 1]      [1]
               nil() = [0]
                       [0]
               cons(x1) = [1 0] x1 + [0]
                          [0 0]      [1]
               from(x1) = [1 0] x1 + [0]
                          [0 0]      [2]
               zWadr(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                               [0 0]      [0 0]      [1]
               prefix(x1) = [0 0] x1 + [0]
                            [0 0]      [2]
            
            The strictly oriented rules are moved into the weak component.
            
            We consider the following Problem:
            
              Weak Trs:
                {  app(cons(X), YS) -> cons(X)
                 , zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X)))
                 , app(nil(), YS) -> YS
                 , prefix(L) -> cons(nil())
                 , from(X) -> cons(X)
                 , zWadr(nil(), YS) -> nil()
                 , zWadr(XS, nil()) -> nil()}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(O(1),O(1))
            
            Proof:
              We consider the following Problem:
              
                Weak Trs:
                  {  app(cons(X), YS) -> cons(X)
                   , zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X)))
                   , app(nil(), YS) -> YS
                   , prefix(L) -> cons(nil())
                   , from(X) -> cons(X)
                   , zWadr(nil(), YS) -> nil()
                   , zWadr(XS, nil()) -> nil()}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(O(1),O(1))
              
              Proof:
                Empty rules are trivially bounded

Hurray, we answered YES(?,O(n^1))