We consider the following Problem:
Strict Trs:
{ from(X) -> cons(X, n__from(n__s(X)))
, sel(0(), cons(X, Y)) -> X
, sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
, from(X) -> n__from(X)
, s(X) -> n__s(X)
, activate(n__from(X)) -> from(activate(X))
, activate(n__s(X)) -> s(activate(X))
, activate(X) -> X}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^2))
Proof:
Arguments of following rules are not normal-forms:
{sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))}
All above mentioned rules can be savely removed.
We consider the following Problem:
Strict Trs:
{ from(X) -> cons(X, n__from(n__s(X)))
, sel(0(), cons(X, Y)) -> X
, from(X) -> n__from(X)
, s(X) -> n__s(X)
, activate(n__from(X)) -> from(activate(X))
, activate(n__s(X)) -> s(activate(X))
, activate(X) -> X}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^2))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {activate(n__s(X)) -> s(activate(X))}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {},
Uargs(n__s) = {}, Uargs(sel) = {}, Uargs(s) = {1},
Uargs(activate) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
from(x1) = [1 1] x1 + [0]
[0 0] [1]
cons(x1, x2) = [1 1] x1 + [0 0] x2 + [1]
[0 0] [0 0] [1]
n__from(x1) = [0 0] x1 + [0]
[1 1] [0]
n__s(x1) = [0 0] x1 + [0]
[1 1] [2]
sel(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
[0 0] [0 0] [1]
0() = [0]
[0]
s(x1) = [1 0] x1 + [0]
[0 0