We consider the following Problem: Strict Trs: { from(X) -> cons(X, n__from(n__s(X))) , sel(0(), cons(X, Y)) -> X , sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: Arguments of following rules are not normal-forms: {sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))} All above mentioned rules can be savely removed. We consider the following Problem: Strict Trs: { from(X) -> cons(X, n__from(n__s(X))) , sel(0(), cons(X, Y)) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(n__s(X)) -> s(activate(X))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {}, Uargs(n__s) = {}, Uargs(sel) = {}, Uargs(s) = {1}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 1] x1 + [0] [0 0] [1] cons(x1, x2) = [1 1] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] n__from(x1) = [0 0] x1 + [0] [1 1] [0] n__s(x1) = [0 0] x1 + [0] [1 1] [2] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] 0() = [0] [0] s(x1) = [1 0] x1 + [0] [0 0