We consider the following Problem: Strict Trs: { terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) , sqr(0()) -> 0() , sqr(s(X)) -> s(n__add(sqr(activate(X)), dbl(activate(X)))) , dbl(0()) -> 0() , dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) , add(0(), X) -> X , add(s(X), Y) -> s(n__add(activate(X), Y)) , first(0(), X) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(activate(X), activate(Z))) , terms(X) -> n__terms(X) , add(X1, X2) -> n__add(X1, X2) , s(X) -> n__s(X) , dbl(X) -> n__dbl(X) , first(X1, X2) -> n__first(X1, X2) , activate(n__terms(X)) -> terms(X) , activate(n__add(X1, X2)) -> add(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__dbl(X)) -> dbl(X) , activate(n__first(X1, X2)) -> first(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: Arguments of following rules are not normal-forms: { sqr(s(X)) -> s(n__add(sqr(activate(X)), dbl(activate(X)))) , dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) , add(s(X), Y) -> s(n__add(activate(X), Y)) , first(s(X), cons(Y, Z)) -> cons(Y, n__first(activate(X), activate(Z)))} All above mentioned rules can be savely removed. We consider the following Problem: Strict Trs: { terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) , sqr(0()) -> 0() , dbl(0()) -> 0() , add(0(), X) -> X , first(0(), X) -> nil() , terms(X) -> n__terms(X) , add(X1, X2) -> n__add(X1, X2) , s(X) -> n__s(X) , dbl(X) -> n__dbl(X) , first(X1, X2) -> n__first(X1, X2) , activate(n__terms(X)) -> terms(X) , activate(n__add(X1, X2)) -> add(X1, X2) , activate(n__s(X)) -> s(X) , activate(n__dbl(X)) -> dbl(X) , activate(n__first(X1, X2)) -> first(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) , dbl(0()) -> 0() , first(0(), X) -> nil() , terms(X) -> n__terms(X) , add(X1, X2) -> n__add(X1, X2) , dbl(X) -> n__dbl(X) , first(X1, X2) -> n__first(X1, X2) , activate(n__s(X)) -> s(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(terms) = {}, Uargs(cons) = {1, 2}, Uargs(recip) = {1}, Uargs(sqr) = {}, Uargs(n__terms) = {1}, Uargs(s) = {}, Uargs(n__add) = {}, Uargs(activate) = {}, Uargs(dbl) = {}, Uargs(n__s) = {}, Uargs(n__dbl) = {}, Uargs(add) = {}, Uargs(first) = {}, Uargs(n__first) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: terms(x1) = [1 0] x1 + [2] [1 0] [2] cons(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] recip(x1) = [1 0] x1 + [0] [0 0] [0] sqr(x1) = [0 0] x1 + [0] [0 0] [1] n__terms(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] 0() = [0] [0] n__add(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] activate(x1) = [1 0] x1 + [1] [1 0] [1] dbl(x1) = [0 0] x1 + [1] [0 0] [1] n__s(x1) = [0 0] x1 + [0] [0 0] [0] n__dbl(x1) = [0 0] x1 + [0] [0 0] [0] add(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] first(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] nil() = [0] [0] n__first(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { sqr(0()) -> 0() , add(0(), X) -> X , s(X) -> n__s(X) , activate(n__terms(X)) -> terms(X) , activate(n__add(X1, X2)) -> add(X1, X2) , activate(n__dbl(X)) -> dbl(X) , activate(n__first(X1, X2)) -> first(X1, X2) , activate(X) -> X} Weak Trs: { terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) , dbl(0()) -> 0() , first(0(), X) -> nil() , terms(X) -> n__terms(X) , add(X1, X2) -> n__add(X1, X2) , dbl(X) -> n__dbl(X) , first(X1, X2) -> n__first(X1, X2) , activate(n__s(X)) -> s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {sqr(0()) -> 0()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(terms) = {}, Uargs(cons) = {1, 2}, Uargs(recip) = {1}, Uargs(sqr) = {}, Uargs(n__terms) = {1}, Uargs(s) = {}, Uargs(n__add) = {}, Uargs(activate) = {}, Uargs(dbl) = {}, Uargs(n__s) = {}, Uargs(n__dbl) = {}, Uargs(add) = {}, Uargs(first) = {}, Uargs(n__first) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: terms(x1) = [1 0] x1 + [2] [1 0] [2] cons(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] recip(x1) = [1 0] x1 + [0] [0 0] [0] sqr(x1) = [0 0] x1 + [1] [0 0] [1] n__terms(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] 0() = [0] [0] n__add(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] activate(x1) = [1 0] x1 + [1] [1 0] [1] dbl(x1) = [0 0] x1 + [1] [0 0] [1] n__s(x1) = [0 0] x1 + [0] [0 0] [0] n__dbl(x1) = [0 0] x1 + [0] [0 0] [0] add(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] first(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] nil() = [0] [0] n__first(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { add(0(), X) -> X , s(X) -> n__s(X) , activate(n__terms(X)) -> terms(X) , activate(n__add(X1, X2)) -> add(X1, X2) , activate(n__dbl(X)) -> dbl(X) , activate(n__first(X1, X2)) -> first(X1, X2) , activate(X) -> X} Weak Trs: { sqr(0()) -> 0() , terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) , dbl(0()) -> 0() , first(0(), X) -> nil() , terms(X) -> n__terms(X) , add(X1, X2) -> n__add(X1, X2) , dbl(X) -> n__dbl(X) , first(X1, X2) -> n__first(X1, X2) , activate(n__s(X)) -> s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {add(0(), X) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(terms) = {}, Uargs(cons) = {1, 2}, Uargs(recip) = {1}, Uargs(sqr) = {}, Uargs(n__terms) = {1}, Uargs(s) = {}, Uargs(n__add) = {}, Uargs(activate) = {}, Uargs(dbl) = {}, Uargs(n__s) = {}, Uargs(n__dbl) = {}, Uargs(add) = {}, Uargs(first) = {}, Uargs(n__first) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: terms(x1) = [1 0] x1 + [2] [0 1] [2] cons(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [1 0] [0 0] [0] recip(x1) = [1 0] x1 + [0] [0 0] [0] sqr(x1) = [0 0] x1 + [1] [0 0] [1] n__terms(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] 0() = [0] [0] n__add(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] activate(x1) = [1 0] x1 + [1] [1 0] [1] dbl(x1) = [0 0] x1 + [1] [0 0] [1] n__s(x1) = [0 0] x1 + [0] [0 0] [0] n__dbl(x1) = [0 0] x1 + [0] [0 0] [0] add(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] first(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] nil() = [0] [0] n__first(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { s(X) -> n__s(X) , activate(n__terms(X)) -> terms(X) , activate(n__add(X1, X2)) -> add(X1, X2) , activate(n__dbl(X)) -> dbl(X) , activate(n__first(X1, X2)) -> first(X1, X2) , activate(X) -> X} Weak Trs: { add(0(), X) -> X , sqr(0()) -> 0() , terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) , dbl(0()) -> 0() , first(0(), X) -> nil() , terms(X) -> n__terms(X) , add(X1, X2) -> n__add(X1, X2) , dbl(X) -> n__dbl(X) , first(X1, X2) -> n__first(X1, X2) , activate(n__s(X)) -> s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(n__first(X1, X2)) -> first(X1, X2)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(terms) = {}, Uargs(cons) = {1, 2}, Uargs(recip) = {1}, Uargs(sqr) = {}, Uargs(n__terms) = {1}, Uargs(s) = {}, Uargs(n__add) = {}, Uargs(activate) = {}, Uargs(dbl) = {}, Uargs(n__s) = {}, Uargs(n__dbl) = {}, Uargs(add) = {}, Uargs(first) = {}, Uargs(n__first) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: terms(x1) = [1 0] x1 + [2] [0 1] [2] cons(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [1 0] [0 0] [0] recip(x1) = [1 0] x1 + [0] [0 0] [0] sqr(x1) = [0 0] x1 + [1] [0 0] [1] n__terms(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] 0() = [0] [0] n__add(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] activate(x1) = [1 0] x1 + [1] [1 0] [1] dbl(x1) = [0 0] x1 + [1] [0 0] [1] n__s(x1) = [0 0] x1 + [0] [0 0] [0] n__dbl(x1) = [0 0] x1 + [0] [0 0] [0] add(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] first(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] nil() = [0] [0] n__first(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { s(X) -> n__s(X) , activate(n__terms(X)) -> terms(X) , activate(n__add(X1, X2)) -> add(X1, X2) , activate(n__dbl(X)) -> dbl(X) , activate(X) -> X} Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , add(0(), X) -> X , sqr(0()) -> 0() , terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) , dbl(0()) -> 0() , first(0(), X) -> nil() , terms(X) -> n__terms(X) , add(X1, X2) -> n__add(X1, X2) , dbl(X) -> n__dbl(X) , first(X1, X2) -> n__first(X1, X2) , activate(n__s(X)) -> s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { activate(n__terms(X)) -> terms(X) , activate(n__dbl(X)) -> dbl(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(terms) = {}, Uargs(cons) = {1, 2}, Uargs(recip) = {1}, Uargs(sqr) = {}, Uargs(n__terms) = {1}, Uargs(s) = {}, Uargs(n__add) = {}, Uargs(activate) = {}, Uargs(dbl) = {}, Uargs(n__s) = {}, Uargs(n__dbl) = {}, Uargs(add) = {}, Uargs(first) = {}, Uargs(n__first) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: terms(x1) = [1 0] x1 + [2] [1 0] [2] cons(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 1] [1] recip(x1) = [1 0] x1 + [0] [0 0] [0] sqr(x1) = [0 0] x1 + [1] [0 0] [1] n__terms(x1) = [1 0] x1 + [1] [0 0] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] 0() = [0] [0] n__add(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] activate(x1) = [1 0] x1 + [2] [1 0] [1] dbl(x1) = [0 0] x1 + [0] [0 0] [1] n__s(x1) = [0 0] x1 + [3] [0 0] [0] n__dbl(x1) = [0 0] x1 + [0] [0 0] [0] add(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] first(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] nil() = [0] [0] n__first(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { s(X) -> n__s(X) , activate(n__add(X1, X2)) -> add(X1, X2) , activate(X) -> X} Weak Trs: { activate(n__terms(X)) -> terms(X) , activate(n__dbl(X)) -> dbl(X) , activate(n__first(X1, X2)) -> first(X1, X2) , add(0(), X) -> X , sqr(0()) -> 0() , terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) , dbl(0()) -> 0() , first(0(), X) -> nil() , terms(X) -> n__terms(X) , add(X1, X2) -> n__add(X1, X2) , dbl(X) -> n__dbl(X) , first(X1, X2) -> n__first(X1, X2) , activate(n__s(X)) -> s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(X) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(terms) = {}, Uargs(cons) = {1, 2}, Uargs(recip) = {1}, Uargs(sqr) = {}, Uargs(n__terms) = {1}, Uargs(s) = {}, Uargs(n__add) = {}, Uargs(activate) = {}, Uargs(dbl) = {}, Uargs(n__s) = {}, Uargs(n__dbl) = {}, Uargs(add) = {}, Uargs(first) = {}, Uargs(n__first) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: terms(x1) = [1 0] x1 + [1] [0 1] [1] cons(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] recip(x1) = [1 0] x1 + [0] [0 0] [0] sqr(x1) = [1 0] x1 + [0] [0 1] [1] n__terms(x1) = [1 0] x1 + [0] [0 1] [1] s(x1) = [0 0] x1 + [0] [0 0] [0] 0() = [0] [0] n__add(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 1] [0 0] [1] activate(x1) = [1 0] x1 + [1] [0 1] [3] dbl(x1) = [0 0] x1 + [1] [1 1] [1] n__s(x1) = [0 0] x1 + [0] [0 0] [0] n__dbl(x1) = [0 0] x1 + [0] [1 1] [0] add(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 1] [0 1] [1] first(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [1 1] [1 1] [1] nil() = [0] [0] n__first(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [1 1] [1 1] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { s(X) -> n__s(X) , activate(n__add(X1, X2)) -> add(X1, X2)} Weak Trs: { activate(X) -> X , activate(n__terms(X)) -> terms(X) , activate(n__dbl(X)) -> dbl(X) , activate(n__first(X1, X2)) -> first(X1, X2) , add(0(), X) -> X , sqr(0()) -> 0() , terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) , dbl(0()) -> 0() , first(0(), X) -> nil() , terms(X) -> n__terms(X) , add(X1, X2) -> n__add(X1, X2) , dbl(X) -> n__dbl(X) , first(X1, X2) -> n__first(X1, X2) , activate(n__s(X)) -> s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(n__add(X1, X2)) -> add(X1, X2)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(terms) = {}, Uargs(cons) = {1, 2}, Uargs(recip) = {1}, Uargs(sqr) = {}, Uargs(n__terms) = {1}, Uargs(s) = {}, Uargs(n__add) = {}, Uargs(activate) = {}, Uargs(dbl) = {}, Uargs(n__s) = {}, Uargs(n__dbl) = {}, Uargs(add) = {}, Uargs(first) = {}, Uargs(n__first) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: terms(x1) = [1 0] x1 + [1] [0 0] [1] cons(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 1] [0 0] [1] recip(x1) = [1 0] x1 + [0] [0 0] [0] sqr(x1) = [0 0] x1 + [0] [0 0] [1] n__terms(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [1 0] x1 + [0] [0 0] [0] 0() = [0] [1] n__add(x1, x2) = [0 1] x1 + [1 0] x2 + [0] [0 0] [0 1] [0] activate(x1) = [1 0] x1 + [1] [0 1] [1] dbl(x1) = [0 0] x1 + [1] [0 0] [1] n__s(x1) = [1 0] x1 + [0] [0 0] [0] n__dbl(x1) = [0 0] x1 + [0] [0 0] [0] add(x1, x2) = [0 1] x1 + [1 0] x2 + [0] [0 0] [0 1] [1] first(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] nil() = [0] [0] n__first(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {s(X) -> n__s(X)} Weak Trs: { activate(n__add(X1, X2)) -> add(X1, X2) , activate(X) -> X , activate(n__terms(X)) -> terms(X) , activate(n__dbl(X)) -> dbl(X) , activate(n__first(X1, X2)) -> first(X1, X2) , add(0(), X) -> X , sqr(0()) -> 0() , terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) , dbl(0()) -> 0() , first(0(), X) -> nil() , terms(X) -> n__terms(X) , add(X1, X2) -> n__add(X1, X2) , dbl(X) -> n__dbl(X) , first(X1, X2) -> n__first(X1, X2) , activate(n__s(X)) -> s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {s(X) -> n__s(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(terms) = {}, Uargs(cons) = {1, 2}, Uargs(recip) = {1}, Uargs(sqr) = {}, Uargs(n__terms) = {1}, Uargs(s) = {}, Uargs(n__add) = {}, Uargs(activate) = {}, Uargs(dbl) = {}, Uargs(n__s) = {}, Uargs(n__dbl) = {}, Uargs(add) = {}, Uargs(first) = {}, Uargs(n__first) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: terms(x1) = [1 0] x1 + [1] [0 0] [1] cons(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 0] [1] recip(x1) = [1 0] x1 + [0] [0 0] [0] sqr(x1) = [0 0] x1 + [0] [0 0] [1] n__terms(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [1 0] x1 + [1] [0 0] [0] 0() = [0] [0] n__add(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 1] [0] activate(x1) = [1 0] x1 + [1] [0 1] [1] dbl(x1) = [0 0] x1 + [1] [0 0] [1] n__s(x1) = [1 0] x1 + [0] [0 0] [0] n__dbl(x1) = [0 0] x1 + [0] [0 0] [0] add(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] first(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] nil() = [0] [0] n__first(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Weak Trs: { s(X) -> n__s(X) , activate(n__add(X1, X2)) -> add(X1, X2) , activate(X) -> X , activate(n__terms(X)) -> terms(X) , activate(n__dbl(X)) -> dbl(X) , activate(n__first(X1, X2)) -> first(X1, X2) , add(0(), X) -> X , sqr(0()) -> 0() , terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) , dbl(0()) -> 0() , first(0(), X) -> nil() , terms(X) -> n__terms(X) , add(X1, X2) -> n__add(X1, X2) , dbl(X) -> n__dbl(X) , first(X1, X2) -> n__first(X1, X2) , activate(n__s(X)) -> s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { s(X) -> n__s(X) , activate(n__add(X1, X2)) -> add(X1, X2) , activate(X) -> X , activate(n__terms(X)) -> terms(X) , activate(n__dbl(X)) -> dbl(X) , activate(n__first(X1, X2)) -> first(X1, X2) , add(0(), X) -> X , sqr(0()) -> 0() , terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) , dbl(0()) -> 0() , first(0(), X) -> nil() , terms(X) -> n__terms(X) , add(X1, X2) -> n__add(X1, X2) , dbl(X) -> n__dbl(X) , first(X1, X2) -> n__first(X1, X2) , activate(n__s(X)) -> s(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))