We consider the following Problem:
Strict Trs:
{ terms(N) -> cons(recip(sqr(N)))
, sqr(0()) -> 0()
, sqr(s()) -> s()
, dbl(0()) -> 0()
, dbl(s()) -> s()
, add(0(), X) -> X
, add(s(), Y) -> s()
, first(0(), X) -> nil()
, first(s(), cons(Y)) -> cons(Y)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
We consider the following Problem:
Strict Trs:
{ terms(N) -> cons(recip(sqr(N)))
, sqr(0()) -> 0()
, sqr(s()) -> s()
, dbl(0()) -> 0()
, dbl(s()) -> s()
, add(0(), X) -> X
, add(s(), Y) -> s()
, first(0(), X) -> nil()
, first(s(), cons(Y)) -> cons(Y)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component:
{ terms(N) -> cons(recip(sqr(N)))
, dbl(0()) -> 0()
, dbl(s()) -> s()
, add(s(), Y) -> s()
, first(0(), X) -> nil()
, first(s(), cons(Y)) -> cons(Y)}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(terms) = {}, Uargs(cons) = {1}, Uargs(recip) = {1},
Uargs(sqr) = {}, Uargs(dbl) = {}, Uargs(add) = {},
Uargs(first) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
terms(x1) = [1 0] x1 + [2]
[1 0] [2]
cons(x1) = [1 0] x1 + [1]
[0 0] [1]
recip(x1) = [1 0] x1 + [0]
[0 0] [0]
sqr(x1) = [0 0] x1 + [0]
[0 0] [1]
0() = [0]
[0]
s() = [0]
[0]
dbl(x1) = [0 0] x1 + [1]
[0 0] [1]
add(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
[0 0] [0 0] [1]
first(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
[0 0] [1 0] [1]
nil() = [0]
[0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ sqr(0()) -> 0()
, sqr(s()) -> s()
, add(0(), X) -> X}
Weak Trs:
{ terms(N) -> cons(recip(sqr(N)))
, dbl(0()) -> 0()
, dbl(s()) -> s()
, add(s(), Y) -> s()
, first(0(), X) -> nil()
, first(s(), cons(Y)) -> cons(Y)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component:
{ sqr(0()) -> 0()
, sqr(s()) -> s()}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(terms) = {}, Uargs(cons) = {1}, Uargs(recip) = {1},
Uargs(sqr) = {}, Uargs(dbl) = {}, Uargs(add) = {},
Uargs(first) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
terms(x1) = [0 0] x1 + [2]
[0 0] [2]
cons(x1) = [1 0] x1 + [0]
[0 0] [1]
recip(x1) = [1 0] x1 + [0]
[0 0] [0]
sqr(x1) = [0 0] x1 + [1]
[0 0] [1]
0() = [0]
[0]
s() = [0]
[0]
dbl(x1) = [0 0] x1 + [1]
[0 0] [1]
add(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
[0 0] [0 0] [1]
first(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
[0 0] [0 0] [1]
nil() = [0]
[0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs: {add(0(), X) -> X}
Weak Trs:
{ sqr(0()) -> 0()
, sqr(s()) -> s()
, terms(N) -> cons(recip(sqr(N)))
, dbl(0()) -> 0()
, dbl(s()) -> s()
, add(s(), Y) -> s()
, first(0(), X) -> nil()
, first(s(), cons(Y)) -> cons(Y)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {add(0(), X) -> X}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(terms) = {}, Uargs(cons) = {1}, Uargs(recip) = {1},
Uargs(sqr) = {}, Uargs(dbl) = {}, Uargs(add) = {},
Uargs(first) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
terms(x1) = [1 0] x1 + [1]
[0 1] [2]
cons(x1) = [1 0] x1 + [0]
[0 0] [1]
recip(x1) = [1 0] x1 + [0]
[0 0] [0]
sqr(x1) = [0 0] x1 + [1]
[0 0] [1]
0() = [0]
[0]
s() = [0]
[0]
dbl(x1) = [0 0] x1 + [1]
[0 0] [1]
add(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
[0 0] [0 1] [1]
first(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
[0 0] [0 0] [1]
nil() = [0]
[0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Weak Trs:
{ add(0(), X) -> X
, sqr(0()) -> 0()
, sqr(s()) -> s()
, terms(N) -> cons(recip(sqr(N)))
, dbl(0()) -> 0()
, dbl(s()) -> s()
, add(s(), Y) -> s()
, first(0(), X) -> nil()
, first(s(), cons(Y)) -> cons(Y)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(O(1),O(1))
Proof:
We consider the following Problem:
Weak Trs:
{ add(0(), X) -> X
, sqr(0()) -> 0()
, sqr(s()) -> s()
, terms(N) -> cons(recip(sqr(N)))
, dbl(0()) -> 0()
, dbl(s()) -> s()
, add(s(), Y) -> s()
, first(0(), X) -> nil()
, first(s(), cons(Y)) -> cons(Y)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(O(1),O(1))
Proof:
Empty rules are trivially bounded
Hurray, we answered YES(?,O(n^1))