We consider the following Problem: Strict Trs: { terms(N) -> cons(recip(sqr(N))) , sqr(0()) -> 0() , sqr(s()) -> s() , dbl(0()) -> 0() , dbl(s()) -> s() , add(0(), X) -> X , add(s(), Y) -> s() , first(0(), X) -> nil() , first(s(), cons(Y)) -> cons(Y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { terms(N) -> cons(recip(sqr(N))) , sqr(0()) -> 0() , sqr(s()) -> s() , dbl(0()) -> 0() , dbl(s()) -> s() , add(0(), X) -> X , add(s(), Y) -> s() , first(0(), X) -> nil() , first(s(), cons(Y)) -> cons(Y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { terms(N) -> cons(recip(sqr(N))) , dbl(0()) -> 0() , dbl(s()) -> s() , add(s(), Y) -> s() , first(0(), X) -> nil() , first(s(), cons(Y)) -> cons(Y)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(terms) = {}, Uargs(cons) = {1}, Uargs(recip) = {1}, Uargs(sqr) = {}, Uargs(dbl) = {}, Uargs(add) = {}, Uargs(first) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: terms(x1) = [1 0] x1 + [2] [1 0] [2] cons(x1) = [1 0] x1 + [1] [0 0] [1] recip(x1) = [1 0] x1 + [0] [0 0] [0] sqr(x1) = [0 0] x1 + [0] [0 0] [1] 0() = [0] [0] s() = [0] [0] dbl(x1) = [0 0] x1 + [1] [0 0] [1] add(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] first(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [1 0] [1] nil() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { sqr(0()) -> 0() , sqr(s()) -> s() , add(0(), X) -> X} Weak Trs: { terms(N) -> cons(recip(sqr(N))) , dbl(0()) -> 0() , dbl(s()) -> s() , add(s(), Y) -> s() , first(0(), X) -> nil() , first(s(), cons(Y)) -> cons(Y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { sqr(0()) -> 0() , sqr(s()) -> s()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(terms) = {}, Uargs(cons) = {1}, Uargs(recip) = {1}, Uargs(sqr) = {}, Uargs(dbl) = {}, Uargs(add) = {}, Uargs(first) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: terms(x1) = [0 0] x1 + [2] [0 0] [2] cons(x1) = [1 0] x1 + [0] [0 0] [1] recip(x1) = [1 0] x1 + [0] [0 0] [0] sqr(x1) = [0 0] x1 + [1] [0 0] [1] 0() = [0] [0] s() = [0] [0] dbl(x1) = [0 0] x1 + [1] [0 0] [1] add(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] first(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] nil() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {add(0(), X) -> X} Weak Trs: { sqr(0()) -> 0() , sqr(s()) -> s() , terms(N) -> cons(recip(sqr(N))) , dbl(0()) -> 0() , dbl(s()) -> s() , add(s(), Y) -> s() , first(0(), X) -> nil() , first(s(), cons(Y)) -> cons(Y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {add(0(), X) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(terms) = {}, Uargs(cons) = {1}, Uargs(recip) = {1}, Uargs(sqr) = {}, Uargs(dbl) = {}, Uargs(add) = {}, Uargs(first) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: terms(x1) = [1 0] x1 + [1] [0 1] [2] cons(x1) = [1 0] x1 + [0] [0 0] [1] recip(x1) = [1 0] x1 + [0] [0 0] [0] sqr(x1) = [0 0] x1 + [1] [0 0] [1] 0() = [0] [0] s() = [0] [0] dbl(x1) = [0 0] x1 + [1] [0 0] [1] add(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] first(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] nil() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Weak Trs: { add(0(), X) -> X , sqr(0()) -> 0() , sqr(s()) -> s() , terms(N) -> cons(recip(sqr(N))) , dbl(0()) -> 0() , dbl(s()) -> s() , add(s(), Y) -> s() , first(0(), X) -> nil() , first(s(), cons(Y)) -> cons(Y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { add(0(), X) -> X , sqr(0()) -> 0() , sqr(s()) -> s() , terms(N) -> cons(recip(sqr(N))) , dbl(0()) -> 0() , dbl(s()) -> s() , add(s(), Y) -> s() , first(0(), X) -> nil() , first(s(), cons(Y)) -> cons(Y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))