We consider the following Problem:

  Strict Trs:
    {  terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N)))
     , sqr(0()) -> 0()
     , sqr(s(X)) -> s(n__add(n__sqr(activate(X)), n__dbl(activate(X))))
     , dbl(0()) -> 0()
     , dbl(s(X)) -> s(n__s(n__dbl(activate(X))))
     , add(0(), X) -> X
     , add(s(X), Y) -> s(n__add(activate(X), Y))
     , first(0(), X) -> nil()
     , first(s(X), cons(Y, Z)) ->
       cons(Y, n__first(activate(X), activate(Z)))
     , terms(X) -> n__terms(X)
     , s(X) -> n__s(X)
     , add(X1, X2) -> n__add(X1, X2)
     , sqr(X) -> n__sqr(X)
     , dbl(X) -> n__dbl(X)
     , first(X1, X2) -> n__first(X1, X2)
     , activate(n__terms(X)) -> terms(activate(X))
     , activate(n__s(X)) -> s(X)
     , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
     , activate(n__sqr(X)) -> sqr(activate(X))
     , activate(n__dbl(X)) -> dbl(activate(X))
     , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))
     , activate(X) -> X}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^2))

Proof:
  Arguments of following rules are not normal-forms:
  {  sqr(s(X)) -> s(n__add(n__sqr(activate(X)), n__dbl(activate(X))))
   , dbl(s(X)) -> s(n__s(n__dbl(activate(X))))
   , add(s(X), Y) -> s(n__add(activate(X), Y))
   , first(s(X), cons(Y, Z)) ->
     cons(Y, n__first(activate(X), activate(Z)))}
  
  All above mentioned rules can be savely removed.
  
  We consider the following Problem:
  
    Strict Trs:
      {  terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N)))
       , sqr(0()) -> 0()
       , dbl(0()) -> 0()
       , add(0(), X) -> X
       , first(0(), X) -> nil()
       , terms(X) -> n__terms(X)
       , s(X) -> n__s(X)
       , add(X1, X2) -> n__add(X1, X2)
       , sqr(X) -> n__sqr(X)
       , dbl(X) -> n__dbl(X)
       , first(X1, X2) -> n__first(X1, X2)
       , activate(n__terms(X)) -> terms(activate(X))
       , activate(n__s(X)) -> s(X)
       , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
       , activate(n__sqr(X)) -> sqr(activate(X))
       , activate(n__dbl(X)) -> dbl(activate(X))
       , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))
       , activate(X) -> X}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^2))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component:
      {  dbl(0()) -> 0()
       , first(0(), X) -> nil()
       , add(X1, X2) -> n__add(X1, X2)
       , dbl(X) -> n__dbl(X)
       , first(X1, X2) -> n__first(X1, X2)
       , activate(n__s(X)) -> s(X)}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1},
        Uargs(sqr) = {1}, Uargs(n__terms) = {}, Uargs(n__s) = {},
        Uargs(s) = {}, Uargs(n__add) = {}, Uargs(n__sqr) = {},
        Uargs(activate) = {}, Uargs(n__dbl) = {}, Uargs(dbl) = {1},
        Uargs(add) = {1, 2}, Uargs(first) = {1, 2}, Uargs(n__first) = {}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       terms(x1) = [1 0] x1 + [0]
                   [0 0]      [1]
       cons(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                      [0 0]      [0 0]      [1]
       recip(x1) = [1 0] x1 + [0]
                   [0 0]      [0]
       sqr(x1) = [1 0] x1 + [0]
                 [0 0]      [1]
       n__terms(x1) = [1 0] x1 + [0]
                      [0 0]      [0]
       n__s(x1) = [0 0] x1 + [0]
                  [0 0]      [0]
       0() = [0]
             [0]
       s(x1) = [0 0] x1 + [0]
               [0 0]      [0]
       n__add(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                        [0 0]      [0 0]      [0]
       n__sqr(x1) = [1 0] x1 + [0]
                    [0 0]      [0]
       activate(x1) = [1 0] x1 + [1]
                      [0 0]      [1]
       n__dbl(x1) = [1 0] x1 + [0]
                    [0 0]      [0]
       dbl(x1) = [1 0] x1 + [1]
                 [0 0]      [1]
       add(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                     [0 0]      [0 0]      [1]
       first(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                       [0 0]      [0 0]      [1]
       nil() = [0]
               [0]
       n__first(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                          [0 0]      [0 0]      [0]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N)))
         , sqr(0()) -> 0()
         , add(0(), X) -> X
         , terms(X) -> n__terms(X)
         , s(X) -> n__s(X)
         , sqr(X) -> n__sqr(X)
         , activate(n__terms(X)) -> terms(activate(X))
         , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
         , activate(n__sqr(X)) -> sqr(activate(X))
         , activate(n__dbl(X)) -> dbl(activate(X))
         , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))
         , activate(X) -> X}
      Weak Trs:
        {  dbl(0()) -> 0()
         , first(0(), X) -> nil()
         , add(X1, X2) -> n__add(X1, X2)
         , dbl(X) -> n__dbl(X)
         , first(X1, X2) -> n__first(X1, X2)
         , activate(n__s(X)) -> s(X)}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^2))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component:
        {  s(X) -> n__s(X)
         , activate(X) -> X}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1},
          Uargs(sqr) = {1}, Uargs(n__terms) = {}, Uargs(n__s) = {},
          Uargs(s) = {}, Uargs(n__add) = {}, Uargs(n__sqr) = {},
          Uargs(activate) = {}, Uargs(n__dbl) = {}, Uargs(dbl) = {1},
          Uargs(add) = {1, 2}, Uargs(first) = {1, 2}, Uargs(n__first) = {}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         terms(x1) = [1 0] x1 + [0]
                     [0 0]      [1]
         cons(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                        [0 0]      [0 0]      [1]
         recip(x1) = [1 0] x1 + [0]
                     [0 0]      [0]
         sqr(x1) = [1 0] x1 + [0]
                   [0 0]      [1]
         n__terms(x1) = [1 0] x1 + [0]
                        [0 0]      [0]
         n__s(x1) = [0 0] x1 + [0]
                    [0 0]      [0]
         0() = [0]
               [0]
         s(x1) = [0 0] x1 + [1]
                 [0 0]      [0]
         n__add(x1, x2) = [1 1] x1 + [1 0] x2 + [0]
                          [0 0]      [0 0]      [0]
         n__sqr(x1) = [1 0] x1 + [0]
                      [0 0]      [0]
         activate(x1) = [1 0] x1 + [1]
                        [0 1]      [1]
         n__dbl(x1) = [1 0] x1 + [0]
                      [0 0]      [0]
         dbl(x1) = [1 0] x1 + [0]
                   [0 0]      [1]
         add(x1, x2) = [1 1] x1 + [1 0] x2 + [1]
                       [0 0]      [0 0]      [1]
         first(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                         [0 0]      [0 0]      [1]
         nil() = [0]
                 [0]
         n__first(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                            [0 0]      [0 0]      [0]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N)))
           , sqr(0()) -> 0()
           , add(0(), X) -> X
           , terms(X) -> n__terms(X)
           , sqr(X) -> n__sqr(X)
           , activate(n__terms(X)) -> terms(activate(X))
           , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
           , activate(n__sqr(X)) -> sqr(activate(X))
           , activate(n__dbl(X)) -> dbl(activate(X))
           , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))}
        Weak Trs:
          {  s(X) -> n__s(X)
           , activate(X) -> X
           , dbl(0()) -> 0()
           , first(0(), X) -> nil()
           , add(X1, X2) -> n__add(X1, X2)
           , dbl(X) -> n__dbl(X)
           , first(X1, X2) -> n__first(X1, X2)
           , activate(n__s(X)) -> s(X)}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^2))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component: {terms(X) -> n__terms(X)}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1},
            Uargs(sqr) = {1}, Uargs(n__terms) = {}, Uargs(n__s) = {},
            Uargs(s) = {}, Uargs(n__add) = {}, Uargs(n__sqr) = {},
            Uargs(activate) = {}, Uargs(n__dbl) = {}, Uargs(dbl) = {1},
            Uargs(add) = {1, 2}, Uargs(first) = {1, 2}, Uargs(n__first) = {}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           terms(x1) = [1 0] x1 + [1]
                       [0 0]      [1]
           cons(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                          [0 0]      [0 0]      [1]
           recip(x1) = [1 0] x1 + [0]
                       [0 0]      [0]
           sqr(x1) = [1 0] x1 + [0]
                     [0 0]      [1]
           n__terms(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           n__s(x1) = [0 0] x1 + [0]
                      [0 0]      [0]
           0() = [0]
                 [0]
           s(x1) = [0 0] x1 + [0]
                   [0 0]      [0]
           n__add(x1, x2) = [1 1] x1 + [1 0] x2 + [0]
                            [0 0]      [0 0]      [0]
           n__sqr(x1) = [1 0] x1 + [0]
                        [0 0]      [0]
           activate(x1) = [1 0] x1 + [1]
                          [0 1]      [1]
           n__dbl(x1) = [1 0] x1 + [0]
                        [0 0]      [0]
           dbl(x1) = [1 0] x1 + [0]
                     [0 0]      [1]
           add(x1, x2) = [1 1] x1 + [1 0] x2 + [1]
                         [0 0]      [0 0]      [1]
           first(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                           [0 1]      [0 1]      [1]
           nil() = [0]
                   [0]
           n__first(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 0]      [0 0]      [0]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N)))
             , sqr(0()) -> 0()
             , add(0(), X) -> X
             , sqr(X) -> n__sqr(X)
             , activate(n__terms(X)) -> terms(activate(X))
             , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
             , activate(n__sqr(X)) -> sqr(activate(X))
             , activate(n__dbl(X)) -> dbl(activate(X))
             , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))}
          Weak Trs:
            {  terms(X) -> n__terms(X)
             , s(X) -> n__s(X)
             , activate(X) -> X
             , dbl(0()) -> 0()
             , first(0(), X) -> nil()
             , add(X1, X2) -> n__add(X1, X2)
             , dbl(X) -> n__dbl(X)
             , first(X1, X2) -> n__first(X1, X2)
             , activate(n__s(X)) -> s(X)}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^2))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component: {terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N)))}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            The following argument positions are usable:
              Uargs(terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1},
              Uargs(sqr) = {1}, Uargs(n__terms) = {}, Uargs(n__s) = {},
              Uargs(s) = {}, Uargs(n__add) = {}, Uargs(n__sqr) = {},
              Uargs(activate) = {}, Uargs(n__dbl) = {}, Uargs(dbl) = {1},
              Uargs(add) = {1, 2}, Uargs(first) = {1, 2}, Uargs(n__first) = {}
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             terms(x1) = [1 0] x1 + [2]
                         [0 0]      [1]
             cons(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                            [0 0]      [0 0]      [1]
             recip(x1) = [1 0] x1 + [0]
                         [0 0]      [0]
             sqr(x1) = [1 0] x1 + [0]
                       [0 0]      [1]
             n__terms(x1) = [1 0] x1 + [0]
                            [0 0]      [0]
             n__s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
             0() = [0]
                   [0]
             s(x1) = [0 0] x1 + [0]
                     [0 0]      [0]
             n__add(x1, x2) = [1 1] x1 + [1 0] x2 + [0]
                              [0 0]      [0 0]      [0]
             n__sqr(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
             activate(x1) = [1 0] x1 + [1]
                            [0 1]      [1]
             n__dbl(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
             dbl(x1) = [1 0] x1 + [0]
                       [0 0]      [1]
             add(x1, x2) = [1 1] x1 + [1 0] x2 + [1]
                           [0 0]      [0 0]      [1]
             first(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                             [0 1]      [0 1]      [1]
             nil() = [0]
                     [0]
             n__first(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                [0 0]      [0 0]      [0]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Strict Trs:
              {  sqr(0()) -> 0()
               , add(0(), X) -> X
               , sqr(X) -> n__sqr(X)
               , activate(n__terms(X)) -> terms(activate(X))
               , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
               , activate(n__sqr(X)) -> sqr(activate(X))
               , activate(n__dbl(X)) -> dbl(activate(X))
               , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))}
            Weak Trs:
              {  terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N)))
               , terms(X) -> n__terms(X)
               , s(X) -> n__s(X)
               , activate(X) -> X
               , dbl(0()) -> 0()
               , first(0(), X) -> nil()
               , add(X1, X2) -> n__add(X1, X2)
               , dbl(X) -> n__dbl(X)
               , first(X1, X2) -> n__first(X1, X2)
               , activate(n__s(X)) -> s(X)}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^2))
          
          Proof:
            The weightgap principle applies, where following rules are oriented strictly:
            
            TRS Component: {activate(n__sqr(X)) -> sqr(activate(X))}
            
            Interpretation of nonconstant growth:
            -------------------------------------
              The following argument positions are usable:
                Uargs(terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1},
                Uargs(sqr) = {1}, Uargs(n__terms) = {}, Uargs(n__s) = {},
                Uargs(s) = {}, Uargs(n__add) = {}, Uargs(n__sqr) = {},
                Uargs(activate) = {}, Uargs(n__dbl) = {}, Uargs(dbl) = {1},
                Uargs(add) = {1, 2}, Uargs(first) = {1, 2}, Uargs(n__first) = {}
              We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
              Interpretation Functions:
               terms(x1) = [1 0] x1 + [2]
                           [0 0]      [2]
               cons(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                              [0 1]      [0 0]      [1]
               recip(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
               sqr(x1) = [1 0] x1 + [0]
                         [0 0]      [1]
               n__terms(x1) = [1 0] x1 + [0]
                              [0 0]      [0]
               n__s(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
               0() = [0]
                     [0]
               s(x1) = [0 0] x1 + [0]
                       [0 0]      [0]
               n__add(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                [0 0]      [0 0]      [0]
               n__sqr(x1) = [1 0] x1 + [2]
                            [0 0]      [0]
               activate(x1) = [1 0] x1 + [0]
                              [0 1]      [2]
               n__dbl(x1) = [1 0] x1 + [0]
                            [0 0]      [0]
               dbl(x1) = [1 0] x1 + [0]
                         [0 1]      [1]
               add(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                             [0 0]      [0 0]      [1]
               first(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                               [0 1]      [0 1]      [1]
               nil() = [0]
                       [0]
               n__first(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
            
            The strictly oriented rules are moved into the weak component.
            
            We consider the following Problem:
            
              Strict Trs:
                {  sqr(0()) -> 0()
                 , add(0(), X) -> X
                 , sqr(X) -> n__sqr(X)
                 , activate(n__terms(X)) -> terms(activate(X))
                 , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
                 , activate(n__dbl(X)) -> dbl(activate(X))
                 , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))}
              Weak Trs:
                {  activate(n__sqr(X)) -> sqr(activate(X))
                 , terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N)))
                 , terms(X) -> n__terms(X)
                 , s(X) -> n__s(X)
                 , activate(X) -> X
                 , dbl(0()) -> 0()
                 , first(0(), X) -> nil()
                 , add(X1, X2) -> n__add(X1, X2)
                 , dbl(X) -> n__dbl(X)
                 , first(X1, X2) -> n__first(X1, X2)
                 , activate(n__s(X)) -> s(X)}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(?,O(n^2))
            
            Proof:
              The weightgap principle applies, where following rules are oriented strictly:
              
              TRS Component: {add(0(), X) -> X}
              
              Interpretation of nonconstant growth:
              -------------------------------------
                The following argument positions are usable:
                  Uargs(terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1},
                  Uargs(sqr) = {1}, Uargs(n__terms) = {}, Uargs(n__s) = {},
                  Uargs(s) = {}, Uargs(n__add) = {}, Uargs(n__sqr) = {},
                  Uargs(activate) = {}, Uargs(n__dbl) = {}, Uargs(dbl) = {1},
                  Uargs(add) = {1, 2}, Uargs(first) = {1, 2}, Uargs(n__first) = {}
                We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                Interpretation Functions:
                 terms(x1) = [1 0] x1 + [2]
                             [0 0]      [2]
                 cons(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                                [0 1]      [0 0]      [1]
                 recip(x1) = [1 0] x1 + [0]
                             [0 0]      [0]
                 sqr(x1) = [1 0] x1 + [0]
                           [0 0]      [1]
                 n__terms(x1) = [1 0] x1 + [0]
                                [0 0]      [1]
                 n__s(x1) = [1 2] x1 + [0]
                            [0 0]      [0]
                 0() = [0]
                       [0]
                 s(x1) = [1 2] x1 + [0]
                         [0 0]      [0]
                 n__add(x1, x2) = [1 1] x1 + [1 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                 n__sqr(x1) = [1 0] x1 + [0]
                              [0 0]      [2]
                 activate(x1) = [1 0] x1 + [1]
                                [0 1]      [0]
                 n__dbl(x1) = [1 0] x1 + [0]
                              [0 0]      [0]
                 dbl(x1) = [1 0] x1 + [0]
                           [0 0]      [1]
                 add(x1, x2) = [1 1] x1 + [1 0] x2 + [1]
                               [0 0]      [0 1]      [1]
                 first(x1, x2) = [1 1] x1 + [1 0] x2 + [3]
                                 [0 0]      [0 1]      [1]
                 nil() = [0]
                         [0]
                 n__first(x1, x2) = [1 1] x1 + [1 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
              
              The strictly oriented rules are moved into the weak component.
              
              We consider the following Problem:
              
                Strict Trs:
                  {  sqr(0()) -> 0()
                   , sqr(X) -> n__sqr(X)
                   , activate(n__terms(X)) -> terms(activate(X))
                   , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
                   , activate(n__dbl(X)) -> dbl(activate(X))
                   , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))}
                Weak Trs:
                  {  add(0(), X) -> X
                   , activate(n__sqr(X)) -> sqr(activate(X))
                   , terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N)))
                   , terms(X) -> n__terms(X)
                   , s(X) -> n__s(X)
                   , activate(X) -> X
                   , dbl(0()) -> 0()
                   , first(0(), X) -> nil()
                   , add(X1, X2) -> n__add(X1, X2)
                   , dbl(X) -> n__dbl(X)
                   , first(X1, X2) -> n__first(X1, X2)
                   , activate(n__s(X)) -> s(X)}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(?,O(n^2))
              
              Proof:
                The weightgap principle applies, where following rules are oriented strictly:
                
                TRS Component: {sqr(0()) -> 0()}
                
                Interpretation of nonconstant growth:
                -------------------------------------
                  The following argument positions are usable:
                    Uargs(terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1},
                    Uargs(sqr) = {1}, Uargs(n__terms) = {}, Uargs(n__s) = {},
                    Uargs(s) = {}, Uargs(n__add) = {}, Uargs(n__sqr) = {},
                    Uargs(activate) = {}, Uargs(n__dbl) = {}, Uargs(dbl) = {1},
                    Uargs(add) = {1, 2}, Uargs(first) = {1, 2}, Uargs(n__first) = {}
                  We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                  Interpretation Functions:
                   terms(x1) = [1 3] x1 + [0]
                               [0 0]      [1]
                   cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [1]
                   recip(x1) = [1 0] x1 + [0]
                               [0 0]      [0]
                   sqr(x1) = [1 2] x1 + [0]
                             [0 0]      [3]
                   n__terms(x1) = [1 3] x1 + [0]
                                  [0 0]      [0]
                   n__s(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                   0() = [1]
                         [2]
                   s(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                   n__add(x1, x2) = [1 1] x1 + [1 0] x2 + [0]
                                    [0 0]      [0 1]      [0]
                   n__sqr(x1) = [1 2] x1 + [0]
                                [0 0]      [3]
                   activate(x1) = [1 0] x1 + [0]
                                  [0 1]      [0]
                   n__dbl(x1) = [1 1] x1 + [0]
                                [0 0]      [0]
                   dbl(x1) = [1 1] x1 + [0]
                             [0 0]      [2]
                   add(x1, x2) = [1 1] x1 + [1 0] x2 + [0]
                                 [0 0]      [0 1]      [1]
                   first(x1, x2) = [1 1] x1 + [1 1] x2 + [1]
                                   [0 0]      [0 0]      [1]
                   nil() = [0]
                           [0]
                   n__first(x1, x2) = [1 1] x1 + [1 1] x2 + [1]
                                      [0 0]      [0 0]      [0]
                
                The strictly oriented rules are moved into the weak component.
                
                We consider the following Problem:
                
                  Strict Trs:
                    {  sqr(X) -> n__sqr(X)
                     , activate(n__terms(X)) -> terms(activate(X))
                     , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
                     , activate(n__dbl(X)) -> dbl(activate(X))
                     , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))}
                  Weak Trs:
                    {  sqr(0()) -> 0()
                     , add(0(), X) -> X
                     , activate(n__sqr(X)) -> sqr(activate(X))
                     , terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N)))
                     , terms(X) -> n__terms(X)
                     , s(X) -> n__s(X)
                     , activate(X) -> X
                     , dbl(0()) -> 0()
                     , first(0(), X) -> nil()
                     , add(X1, X2) -> n__add(X1, X2)
                     , dbl(X) -> n__dbl(X)
                     , first(X1, X2) -> n__first(X1, X2)
                     , activate(n__s(X)) -> s(X)}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(?,O(n^2))
                
                Proof:
                  We consider the following Problem:
                  
                    Strict Trs:
                      {  sqr(X) -> n__sqr(X)
                       , activate(n__terms(X)) -> terms(activate(X))
                       , activate(n__add(X1, X2)) -> add(activate(X1), activate(X2))
                       , activate(n__dbl(X)) -> dbl(activate(X))
                       , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))}
                    Weak Trs:
                      {  sqr(0()) -> 0()
                       , add(0(), X) -> X
                       , activate(n__sqr(X)) -> sqr(activate(X))
                       , terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N)))
                       , terms(X) -> n__terms(X)
                       , s(X) -> n__s(X)
                       , activate(X) -> X
                       , dbl(0()) -> 0()
                       , first(0(), X) -> nil()
                       , add(X1, X2) -> n__add(X1, X2)
                       , dbl(X) -> n__dbl(X)
                       , first(X1, X2) -> n__first(X1, X2)
                       , activate(n__s(X)) -> s(X)}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(?,O(n^2))
                  
                  Proof:
                    The following argument positions are usable:
                      Uargs(terms) = {1}, Uargs(cons) = {1}, Uargs(recip) = {1},
                      Uargs(sqr) = {1}, Uargs(n__terms) = {}, Uargs(n__s) = {},
                      Uargs(s) = {}, Uargs(n__add) = {}, Uargs(n__sqr) = {},
                      Uargs(activate) = {}, Uargs(n__dbl) = {}, Uargs(dbl) = {1},
                      Uargs(add) = {1, 2}, Uargs(first) = {1, 2}, Uargs(n__first) = {}
                    We have the following restricted  polynomial interpretation:
                    Interpretation Functions:
                     [terms](x1) = 3 + x1
                     [cons](x1, x2) = 1 + x1
                     [recip](x1) = x1
                     [sqr](x1) = 2 + x1
                     [n__terms](x1) = 3 + x1
                     [n__s](x1) = 0
                     [0]() = 1
                     [s](x1) = 0
                     [n__add](x1, x2) = 3 + x1 + x2
                     [n__sqr](x1) = 1 + x1
                     [activate](x1) = 2*x1 + x1^2
                     [n__dbl](x1) = 2 + x1
                     [dbl](x1) = 2 + x1
                     [add](x1, x2) = 3 + x1 + x2
                     [first](x1, x2) = 1 + x1 + x2
                     [nil]() = 0
                     [n__first](x1, x2) = 1 + x1 + x2

Hurray, we answered YES(?,O(n^2))