(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
terms(N) → cons(recip(sqr(N)), n__terms(n__s(N)))
sqr(0) → 0
sqr(s(X)) → s(n__add(n__sqr(activate(X)), n__dbl(activate(X))))
dbl(0) → 0
dbl(s(X)) → s(n__s(n__dbl(activate(X))))
add(0, X) → X
add(s(X), Y) → s(n__add(activate(X), Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(activate(X), activate(Z)))
terms(X) → n__terms(X)
s(X) → n__s(X)
add(X1, X2) → n__add(X1, X2)
sqr(X) → n__sqr(X)
dbl(X) → n__dbl(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(activate(X))
activate(n__s(X)) → s(X)
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(n__sqr(X)) → sqr(activate(X))
activate(n__dbl(X)) → dbl(activate(X))
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(X) → X
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
terms(z0) → cons(recip(sqr(z0)), n__terms(n__s(z0)))
terms(z0) → n__terms(z0)
sqr(0) → 0
sqr(s(z0)) → s(n__add(n__sqr(activate(z0)), n__dbl(activate(z0))))
sqr(z0) → n__sqr(z0)
dbl(0) → 0
dbl(s(z0)) → s(n__s(n__dbl(activate(z0))))
dbl(z0) → n__dbl(z0)
add(0, z0) → z0
add(s(z0), z1) → s(n__add(activate(z0), z1))
add(z0, z1) → n__add(z0, z1)
first(0, z0) → nil
first(s(z0), cons(z1, z2)) → cons(z1, n__first(activate(z0), activate(z2)))
first(z0, z1) → n__first(z0, z1)
s(z0) → n__s(z0)
activate(n__terms(z0)) → terms(activate(z0))
activate(n__s(z0)) → s(z0)
activate(n__add(z0, z1)) → add(activate(z0), activate(z1))
activate(n__sqr(z0)) → sqr(activate(z0))
activate(n__dbl(z0)) → dbl(activate(z0))
activate(n__first(z0, z1)) → first(activate(z0), activate(z1))
activate(z0) → z0
Tuples:
TERMS(z0) → c(SQR(z0))
SQR(s(z0)) → c3(S(n__add(n__sqr(activate(z0)), n__dbl(activate(z0)))), ACTIVATE(z0), ACTIVATE(z0))
DBL(s(z0)) → c6(S(n__s(n__dbl(activate(z0)))), ACTIVATE(z0))
ADD(s(z0), z1) → c9(S(n__add(activate(z0), z1)), ACTIVATE(z0))
FIRST(s(z0), cons(z1, z2)) → c12(ACTIVATE(z0), ACTIVATE(z2))
ACTIVATE(n__terms(z0)) → c15(TERMS(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c16(S(z0))
ACTIVATE(n__add(z0, z1)) → c17(ADD(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__sqr(z0)) → c18(SQR(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__dbl(z0)) → c19(DBL(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__first(z0, z1)) → c20(FIRST(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
S tuples:
TERMS(z0) → c(SQR(z0))
SQR(s(z0)) → c3(S(n__add(n__sqr(activate(z0)), n__dbl(activate(z0)))), ACTIVATE(z0), ACTIVATE(z0))
DBL(s(z0)) → c6(S(n__s(n__dbl(activate(z0)))), ACTIVATE(z0))
ADD(s(z0), z1) → c9(S(n__add(activate(z0), z1)), ACTIVATE(z0))
FIRST(s(z0), cons(z1, z2)) → c12(ACTIVATE(z0), ACTIVATE(z2))
ACTIVATE(n__terms(z0)) → c15(TERMS(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c16(S(z0))
ACTIVATE(n__add(z0, z1)) → c17(ADD(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__sqr(z0)) → c18(SQR(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__dbl(z0)) → c19(DBL(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__first(z0, z1)) → c20(FIRST(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
K tuples:none
Defined Rule Symbols:
terms, sqr, dbl, add, first, s, activate
Defined Pair Symbols:
TERMS, SQR, DBL, ADD, FIRST, ACTIVATE
Compound Symbols:
c, c3, c6, c9, c12, c15, c16, c17, c18, c19, c20
(3) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
SQR(s(z0)) → c3(S(n__add(n__sqr(activate(z0)), n__dbl(activate(z0)))), ACTIVATE(z0), ACTIVATE(z0))
DBL(s(z0)) → c6(S(n__s(n__dbl(activate(z0)))), ACTIVATE(z0))
ADD(s(z0), z1) → c9(S(n__add(activate(z0), z1)), ACTIVATE(z0))
FIRST(s(z0), cons(z1, z2)) → c12(ACTIVATE(z0), ACTIVATE(z2))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
terms(z0) → cons(recip(sqr(z0)), n__terms(n__s(z0)))
terms(z0) → n__terms(z0)
sqr(0) → 0
sqr(s(z0)) → s(n__add(n__sqr(activate(z0)), n__dbl(activate(z0))))
sqr(z0) → n__sqr(z0)
dbl(0) → 0
dbl(s(z0)) → s(n__s(n__dbl(activate(z0))))
dbl(z0) → n__dbl(z0)
add(0, z0) → z0
add(s(z0), z1) → s(n__add(activate(z0), z1))
add(z0, z1) → n__add(z0, z1)
first(0, z0) → nil
first(s(z0), cons(z1, z2)) → cons(z1, n__first(activate(z0), activate(z2)))
first(z0, z1) → n__first(z0, z1)
s(z0) → n__s(z0)
activate(n__terms(z0)) → terms(activate(z0))
activate(n__s(z0)) → s(z0)
activate(n__add(z0, z1)) → add(activate(z0), activate(z1))
activate(n__sqr(z0)) → sqr(activate(z0))
activate(n__dbl(z0)) → dbl(activate(z0))
activate(n__first(z0, z1)) → first(activate(z0), activate(z1))
activate(z0) → z0
Tuples:
TERMS(z0) → c(SQR(z0))
ACTIVATE(n__terms(z0)) → c15(TERMS(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c16(S(z0))
ACTIVATE(n__add(z0, z1)) → c17(ADD(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__sqr(z0)) → c18(SQR(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__dbl(z0)) → c19(DBL(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__first(z0, z1)) → c20(FIRST(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
S tuples:
TERMS(z0) → c(SQR(z0))
ACTIVATE(n__terms(z0)) → c15(TERMS(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__s(z0)) → c16(S(z0))
ACTIVATE(n__add(z0, z1)) → c17(ADD(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__sqr(z0)) → c18(SQR(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__dbl(z0)) → c19(DBL(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__first(z0, z1)) → c20(FIRST(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
K tuples:none
Defined Rule Symbols:
terms, sqr, dbl, add, first, s, activate
Defined Pair Symbols:
TERMS, ACTIVATE
Compound Symbols:
c, c15, c16, c17, c18, c19, c20
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
TERMS(z0) → c(SQR(z0))
ACTIVATE(n__s(z0)) → c16(S(z0))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
terms(z0) → cons(recip(sqr(z0)), n__terms(n__s(z0)))
terms(z0) → n__terms(z0)
sqr(0) → 0
sqr(s(z0)) → s(n__add(n__sqr(activate(z0)), n__dbl(activate(z0))))
sqr(z0) → n__sqr(z0)
dbl(0) → 0
dbl(s(z0)) → s(n__s(n__dbl(activate(z0))))
dbl(z0) → n__dbl(z0)
add(0, z0) → z0
add(s(z0), z1) → s(n__add(activate(z0), z1))
add(z0, z1) → n__add(z0, z1)
first(0, z0) → nil
first(s(z0), cons(z1, z2)) → cons(z1, n__first(activate(z0), activate(z2)))
first(z0, z1) → n__first(z0, z1)
s(z0) → n__s(z0)
activate(n__terms(z0)) → terms(activate(z0))
activate(n__s(z0)) → s(z0)
activate(n__add(z0, z1)) → add(activate(z0), activate(z1))
activate(n__sqr(z0)) → sqr(activate(z0))
activate(n__dbl(z0)) → dbl(activate(z0))
activate(n__first(z0, z1)) → first(activate(z0), activate(z1))
activate(z0) → z0
Tuples:
ACTIVATE(n__terms(z0)) → c15(TERMS(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__add(z0, z1)) → c17(ADD(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__sqr(z0)) → c18(SQR(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__dbl(z0)) → c19(DBL(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__first(z0, z1)) → c20(FIRST(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
S tuples:
ACTIVATE(n__terms(z0)) → c15(TERMS(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__add(z0, z1)) → c17(ADD(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__sqr(z0)) → c18(SQR(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__dbl(z0)) → c19(DBL(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__first(z0, z1)) → c20(FIRST(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
K tuples:none
Defined Rule Symbols:
terms, sqr, dbl, add, first, s, activate
Defined Pair Symbols:
ACTIVATE
Compound Symbols:
c15, c17, c18, c19, c20
(7) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 5 trailing tuple parts
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
terms(z0) → cons(recip(sqr(z0)), n__terms(n__s(z0)))
terms(z0) → n__terms(z0)
sqr(0) → 0
sqr(s(z0)) → s(n__add(n__sqr(activate(z0)), n__dbl(activate(z0))))
sqr(z0) → n__sqr(z0)
dbl(0) → 0
dbl(s(z0)) → s(n__s(n__dbl(activate(z0))))
dbl(z0) → n__dbl(z0)
add(0, z0) → z0
add(s(z0), z1) → s(n__add(activate(z0), z1))
add(z0, z1) → n__add(z0, z1)
first(0, z0) → nil
first(s(z0), cons(z1, z2)) → cons(z1, n__first(activate(z0), activate(z2)))
first(z0, z1) → n__first(z0, z1)
s(z0) → n__s(z0)
activate(n__terms(z0)) → terms(activate(z0))
activate(n__s(z0)) → s(z0)
activate(n__add(z0, z1)) → add(activate(z0), activate(z1))
activate(n__sqr(z0)) → sqr(activate(z0))
activate(n__dbl(z0)) → dbl(activate(z0))
activate(n__first(z0, z1)) → first(activate(z0), activate(z1))
activate(z0) → z0
Tuples:
ACTIVATE(n__terms(z0)) → c15(ACTIVATE(z0))
ACTIVATE(n__add(z0, z1)) → c17(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__sqr(z0)) → c18(ACTIVATE(z0))
ACTIVATE(n__dbl(z0)) → c19(ACTIVATE(z0))
ACTIVATE(n__first(z0, z1)) → c20(ACTIVATE(z0), ACTIVATE(z1))
S tuples:
ACTIVATE(n__terms(z0)) → c15(ACTIVATE(z0))
ACTIVATE(n__add(z0, z1)) → c17(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__sqr(z0)) → c18(ACTIVATE(z0))
ACTIVATE(n__dbl(z0)) → c19(ACTIVATE(z0))
ACTIVATE(n__first(z0, z1)) → c20(ACTIVATE(z0), ACTIVATE(z1))
K tuples:none
Defined Rule Symbols:
terms, sqr, dbl, add, first, s, activate
Defined Pair Symbols:
ACTIVATE
Compound Symbols:
c15, c17, c18, c19, c20
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVATE(n__add(z0, z1)) → c17(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__sqr(z0)) → c18(ACTIVATE(z0))
ACTIVATE(n__dbl(z0)) → c19(ACTIVATE(z0))
ACTIVATE(n__first(z0, z1)) → c20(ACTIVATE(z0), ACTIVATE(z1))
We considered the (Usable) Rules:none
And the Tuples:
ACTIVATE(n__terms(z0)) → c15(ACTIVATE(z0))
ACTIVATE(n__add(z0, z1)) → c17(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__sqr(z0)) → c18(ACTIVATE(z0))
ACTIVATE(n__dbl(z0)) → c19(ACTIVATE(z0))
ACTIVATE(n__first(z0, z1)) → c20(ACTIVATE(z0), ACTIVATE(z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVATE(x1)) = [5] + [4]x1
POL(c15(x1)) = x1
POL(c17(x1, x2)) = x1 + x2
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c20(x1, x2)) = x1 + x2
POL(n__add(x1, x2)) = [4] + x1 + x2
POL(n__dbl(x1)) = [5] + x1
POL(n__first(x1, x2)) = [4] + x1 + x2
POL(n__sqr(x1)) = [5] + x1
POL(n__terms(x1)) = x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
terms(z0) → cons(recip(sqr(z0)), n__terms(n__s(z0)))
terms(z0) → n__terms(z0)
sqr(0) → 0
sqr(s(z0)) → s(n__add(n__sqr(activate(z0)), n__dbl(activate(z0))))
sqr(z0) → n__sqr(z0)
dbl(0) → 0
dbl(s(z0)) → s(n__s(n__dbl(activate(z0))))
dbl(z0) → n__dbl(z0)
add(0, z0) → z0
add(s(z0), z1) → s(n__add(activate(z0), z1))
add(z0, z1) → n__add(z0, z1)
first(0, z0) → nil
first(s(z0), cons(z1, z2)) → cons(z1, n__first(activate(z0), activate(z2)))
first(z0, z1) → n__first(z0, z1)
s(z0) → n__s(z0)
activate(n__terms(z0)) → terms(activate(z0))
activate(n__s(z0)) → s(z0)
activate(n__add(z0, z1)) → add(activate(z0), activate(z1))
activate(n__sqr(z0)) → sqr(activate(z0))
activate(n__dbl(z0)) → dbl(activate(z0))
activate(n__first(z0, z1)) → first(activate(z0), activate(z1))
activate(z0) → z0
Tuples:
ACTIVATE(n__terms(z0)) → c15(ACTIVATE(z0))
ACTIVATE(n__add(z0, z1)) → c17(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__sqr(z0)) → c18(ACTIVATE(z0))
ACTIVATE(n__dbl(z0)) → c19(ACTIVATE(z0))
ACTIVATE(n__first(z0, z1)) → c20(ACTIVATE(z0), ACTIVATE(z1))
S tuples:
ACTIVATE(n__terms(z0)) → c15(ACTIVATE(z0))
K tuples:
ACTIVATE(n__add(z0, z1)) → c17(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__sqr(z0)) → c18(ACTIVATE(z0))
ACTIVATE(n__dbl(z0)) → c19(ACTIVATE(z0))
ACTIVATE(n__first(z0, z1)) → c20(ACTIVATE(z0), ACTIVATE(z1))
Defined Rule Symbols:
terms, sqr, dbl, add, first, s, activate
Defined Pair Symbols:
ACTIVATE
Compound Symbols:
c15, c17, c18, c19, c20
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVATE(n__terms(z0)) → c15(ACTIVATE(z0))
We considered the (Usable) Rules:none
And the Tuples:
ACTIVATE(n__terms(z0)) → c15(ACTIVATE(z0))
ACTIVATE(n__add(z0, z1)) → c17(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__sqr(z0)) → c18(ACTIVATE(z0))
ACTIVATE(n__dbl(z0)) → c19(ACTIVATE(z0))
ACTIVATE(n__first(z0, z1)) → c20(ACTIVATE(z0), ACTIVATE(z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVATE(x1)) = [3] + [4]x1
POL(c15(x1)) = x1
POL(c17(x1, x2)) = x1 + x2
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c20(x1, x2)) = x1 + x2
POL(n__add(x1, x2)) = [4] + x1 + x2
POL(n__dbl(x1)) = x1
POL(n__first(x1, x2)) = [4] + x1 + x2
POL(n__sqr(x1)) = x1
POL(n__terms(x1)) = [1] + x1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
terms(z0) → cons(recip(sqr(z0)), n__terms(n__s(z0)))
terms(z0) → n__terms(z0)
sqr(0) → 0
sqr(s(z0)) → s(n__add(n__sqr(activate(z0)), n__dbl(activate(z0))))
sqr(z0) → n__sqr(z0)
dbl(0) → 0
dbl(s(z0)) → s(n__s(n__dbl(activate(z0))))
dbl(z0) → n__dbl(z0)
add(0, z0) → z0
add(s(z0), z1) → s(n__add(activate(z0), z1))
add(z0, z1) → n__add(z0, z1)
first(0, z0) → nil
first(s(z0), cons(z1, z2)) → cons(z1, n__first(activate(z0), activate(z2)))
first(z0, z1) → n__first(z0, z1)
s(z0) → n__s(z0)
activate(n__terms(z0)) → terms(activate(z0))
activate(n__s(z0)) → s(z0)
activate(n__add(z0, z1)) → add(activate(z0), activate(z1))
activate(n__sqr(z0)) → sqr(activate(z0))
activate(n__dbl(z0)) → dbl(activate(z0))
activate(n__first(z0, z1)) → first(activate(z0), activate(z1))
activate(z0) → z0
Tuples:
ACTIVATE(n__terms(z0)) → c15(ACTIVATE(z0))
ACTIVATE(n__add(z0, z1)) → c17(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__sqr(z0)) → c18(ACTIVATE(z0))
ACTIVATE(n__dbl(z0)) → c19(ACTIVATE(z0))
ACTIVATE(n__first(z0, z1)) → c20(ACTIVATE(z0), ACTIVATE(z1))
S tuples:none
K tuples:
ACTIVATE(n__add(z0, z1)) → c17(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__sqr(z0)) → c18(ACTIVATE(z0))
ACTIVATE(n__dbl(z0)) → c19(ACTIVATE(z0))
ACTIVATE(n__first(z0, z1)) → c20(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__terms(z0)) → c15(ACTIVATE(z0))
Defined Rule Symbols:
terms, sqr, dbl, add, first, s, activate
Defined Pair Symbols:
ACTIVATE
Compound Symbols:
c15, c17, c18, c19, c20
(13) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(14) BOUNDS(O(1), O(1))