(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(f(f(X))) → mark(c(f(g(f(X)))))
active(c(X)) → mark(d(X))
active(h(X)) → mark(c(d(X)))
mark(f(X)) → active(f(mark(X)))
mark(c(X)) → active(c(X))
mark(g(X)) → active(g(X))
mark(d(X)) → active(d(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
c(mark(X)) → c(X)
c(active(X)) → c(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
d(mark(X)) → d(X)
d(active(X)) → d(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
c(mark(z0)) → c(z0)
c(active(z0)) → c(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
d(mark(z0)) → d(z0)
d(active(z0)) → d(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
S tuples:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
K tuples:none
Defined Rule Symbols:
active, mark, f, c, g, d, h
Defined Pair Symbols:
ACTIVE, MARK, F, C, G, D, H
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
We considered the (Usable) Rules:
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
h(active(z0)) → h(z0)
h(mark(z0)) → h(z0)
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
f(active(z0)) → f(z0)
f(mark(z0)) → f(z0)
And the Tuples:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(C(x1)) = 0
POL(D(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(MARK(x1)) = [2]x1
POL(active(x1)) = 0
POL(c(x1)) = 0
POL(c1(x1, x2, x3, x4, x5)) = x1 + x2 + x3 + x4 + x5
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2, x3)) = x1 + x2 + x3
POL(c9(x1)) = x1
POL(d(x1)) = 0
POL(f(x1)) = [2]x1
POL(g(x1)) = [4]
POL(h(x1)) = [2]x1
POL(mark(x1)) = [4]x1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
c(mark(z0)) → c(z0)
c(active(z0)) → c(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
d(mark(z0)) → d(z0)
d(active(z0)) → d(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
S tuples:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
K tuples:
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
Defined Rule Symbols:
active, mark, f, c, g, d, h
Defined Pair Symbols:
ACTIVE, MARK, F, C, G, D, H
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
We considered the (Usable) Rules:
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
h(active(z0)) → h(z0)
h(mark(z0)) → h(z0)
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
f(active(z0)) → f(z0)
f(mark(z0)) → f(z0)
And the Tuples:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(C(x1)) = 0
POL(D(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = 0
POL(MARK(x1)) = x1
POL(active(x1)) = [2] + [5]x1
POL(c(x1)) = 0
POL(c1(x1, x2, x3, x4, x5)) = x1 + x2 + x3 + x4 + x5
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2, x3)) = x1 + x2 + x3
POL(c9(x1)) = x1
POL(d(x1)) = 0
POL(f(x1)) = [2] + x1
POL(g(x1)) = 0
POL(h(x1)) = x1
POL(mark(x1)) = 0
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
c(mark(z0)) → c(z0)
c(active(z0)) → c(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
d(mark(z0)) → d(z0)
d(active(z0)) → d(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
S tuples:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
K tuples:
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
Defined Rule Symbols:
active, mark, f, c, g, d, h
Defined Pair Symbols:
ACTIVE, MARK, F, C, G, D, H
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
We considered the (Usable) Rules:
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
h(active(z0)) → h(z0)
h(mark(z0)) → h(z0)
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
f(active(z0)) → f(z0)
f(mark(z0)) → f(z0)
And the Tuples:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(C(x1)) = 0
POL(D(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = [2]
POL(MARK(x1)) = [4]x1
POL(active(x1)) = [1]
POL(c(x1)) = 0
POL(c1(x1, x2, x3, x4, x5)) = x1 + x2 + x3 + x4 + x5
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2, x3)) = x1 + x2 + x3
POL(c9(x1)) = x1
POL(d(x1)) = 0
POL(f(x1)) = [1] + [2]x1
POL(g(x1)) = 0
POL(h(x1)) = [2] + [4]x1
POL(mark(x1)) = [1] + x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
c(mark(z0)) → c(z0)
c(active(z0)) → c(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
d(mark(z0)) → d(z0)
d(active(z0)) → d(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
S tuples:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
K tuples:
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
Defined Rule Symbols:
active, mark, f, c, g, d, h
Defined Pair Symbols:
ACTIVE, MARK, F, C, G, D, H
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18
(9) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
c(mark(z0)) → c(z0)
c(active(z0)) → c(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
d(mark(z0)) → d(z0)
d(active(z0)) → d(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
S tuples:
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
K tuples:
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
Defined Rule Symbols:
active, mark, f, c, g, d, h
Defined Pair Symbols:
ACTIVE, MARK, F, C, G, D, H
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
We considered the (Usable) Rules:
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
h(active(z0)) → h(z0)
h(mark(z0)) → h(z0)
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
f(active(z0)) → f(z0)
f(mark(z0)) → f(z0)
And the Tuples:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(C(x1)) = [2]x1
POL(D(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = [2]
POL(MARK(x1)) = x1
POL(active(x1)) = [1] + [4]x1
POL(c(x1)) = [2]x1
POL(c1(x1, x2, x3, x4, x5)) = x1 + x2 + x3 + x4 + x5
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2, x3)) = x1 + x2 + x3
POL(c9(x1)) = x1
POL(d(x1)) = 0
POL(f(x1)) = [4]x1
POL(g(x1)) = 0
POL(h(x1)) = [4] + x1
POL(mark(x1)) = [4] + [4]x1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
c(mark(z0)) → c(z0)
c(active(z0)) → c(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
d(mark(z0)) → d(z0)
d(active(z0)) → d(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
S tuples:
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
K tuples:
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
Defined Rule Symbols:
active, mark, f, c, g, d, h
Defined Pair Symbols:
ACTIVE, MARK, F, C, G, D, H
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18
(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
We considered the (Usable) Rules:
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
h(active(z0)) → h(z0)
h(mark(z0)) → h(z0)
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
f(active(z0)) → f(z0)
f(mark(z0)) → f(z0)
And the Tuples:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [4]
POL(C(x1)) = 0
POL(D(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(H(x1)) = [2] + x1
POL(MARK(x1)) = [4] + [2]x1
POL(active(x1)) = [1] + x1
POL(c(x1)) = 0
POL(c1(x1, x2, x3, x4, x5)) = x1 + x2 + x3 + x4 + x5
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2, x3)) = x1 + x2 + x3
POL(c9(x1)) = x1
POL(d(x1)) = 0
POL(f(x1)) = [2] + [2]x1
POL(g(x1)) = 0
POL(h(x1)) = [4] + [4]x1
POL(mark(x1)) = [1] + [5]x1
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
c(mark(z0)) → c(z0)
c(active(z0)) → c(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
d(mark(z0)) → d(z0)
d(active(z0)) → d(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
S tuples:
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
K tuples:
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
Defined Rule Symbols:
active, mark, f, c, g, d, h
Defined Pair Symbols:
ACTIVE, MARK, F, C, G, D, H
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18
(15) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(active(z0)) → c14(G(z0))
We considered the (Usable) Rules:
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
h(active(z0)) → h(z0)
h(mark(z0)) → h(z0)
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
f(active(z0)) → f(z0)
f(mark(z0)) → f(z0)
And the Tuples:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [2] + x1
POL(C(x1)) = 0
POL(D(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = x1
POL(H(x1)) = [1]
POL(MARK(x1)) = [3]x1
POL(active(x1)) = [1] + x1
POL(c(x1)) = [2]
POL(c1(x1, x2, x3, x4, x5)) = x1 + x2 + x3 + x4 + x5
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2, x3)) = x1 + x2 + x3
POL(c9(x1)) = x1
POL(d(x1)) = [1]
POL(f(x1)) = [1] + [4]x1
POL(g(x1)) = [4] + [4]x1
POL(h(x1)) = [4] + [3]x1
POL(mark(x1)) = [2]x1
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
c(mark(z0)) → c(z0)
c(active(z0)) → c(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
d(mark(z0)) → d(z0)
d(active(z0)) → d(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
S tuples:
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
G(mark(z0)) → c13(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
K tuples:
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
G(active(z0)) → c14(G(z0))
Defined Rule Symbols:
active, mark, f, c, g, d, h
Defined Pair Symbols:
ACTIVE, MARK, F, C, G, D, H
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18
(17) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(mark(z0)) → c13(G(z0))
We considered the (Usable) Rules:
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
h(active(z0)) → h(z0)
h(mark(z0)) → h(z0)
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
f(active(z0)) → f(z0)
f(mark(z0)) → f(z0)
And the Tuples:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = x1
POL(C(x1)) = 0
POL(D(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = [4]x1
POL(H(x1)) = 0
POL(MARK(x1)) = [3]x1
POL(active(x1)) = x1
POL(c(x1)) = [1]
POL(c1(x1, x2, x3, x4, x5)) = x1 + x2 + x3 + x4 + x5
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2, x3)) = x1 + x2 + x3
POL(c9(x1)) = x1
POL(d(x1)) = 0
POL(f(x1)) = [3] + [4]x1
POL(g(x1)) = [2] + [2]x1
POL(h(x1)) = [3] + [3]x1
POL(mark(x1)) = [1] + [2]x1
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
c(mark(z0)) → c(z0)
c(active(z0)) → c(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
d(mark(z0)) → d(z0)
d(active(z0)) → d(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
S tuples:
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
K tuples:
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
G(active(z0)) → c14(G(z0))
G(mark(z0)) → c13(G(z0))
Defined Rule Symbols:
active, mark, f, c, g, d, h
Defined Pair Symbols:
ACTIVE, MARK, F, C, G, D, H
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18
(19) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
We considered the (Usable) Rules:
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
h(active(z0)) → h(z0)
h(mark(z0)) → h(z0)
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
f(active(z0)) → f(z0)
f(mark(z0)) → f(z0)
And the Tuples:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = x1
POL(C(x1)) = 0
POL(D(x1)) = 0
POL(F(x1)) = [1] + [2]x1
POL(G(x1)) = 0
POL(H(x1)) = [3]
POL(MARK(x1)) = [4]x1
POL(active(x1)) = [1] + x1
POL(c(x1)) = 0
POL(c1(x1, x2, x3, x4, x5)) = x1 + x2 + x3 + x4 + x5
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2, x3)) = x1 + x2 + x3
POL(c9(x1)) = x1
POL(d(x1)) = 0
POL(f(x1)) = [4] + [4]x1
POL(g(x1)) = 0
POL(h(x1)) = [2] + [2]x1
POL(mark(x1)) = [1] + [2]x1
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
c(mark(z0)) → c(z0)
c(active(z0)) → c(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
d(mark(z0)) → d(z0)
d(active(z0)) → d(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
S tuples:
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
K tuples:
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
G(active(z0)) → c14(G(z0))
G(mark(z0)) → c13(G(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
Defined Rule Symbols:
active, mark, f, c, g, d, h
Defined Pair Symbols:
ACTIVE, MARK, F, C, G, D, H
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18
(21) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
f(
f(
z0))) →
c1(
MARK(
c(
f(
g(
f(
z0))))),
C(
f(
g(
f(
z0)))),
F(
g(
f(
z0))),
G(
f(
z0)),
F(
z0)) by
ACTIVE(f(f(x0))) → c1(MARK(c(f(g(f(x0))))), F(x0))
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
c(mark(z0)) → c(z0)
c(active(z0)) → c(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
d(mark(z0)) → d(z0)
d(active(z0)) → d(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
ACTIVE(f(f(x0))) → c1(MARK(c(f(g(f(x0))))), F(x0))
S tuples:
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
K tuples:
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
G(active(z0)) → c14(G(z0))
G(mark(z0)) → c13(G(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
Defined Rule Symbols:
active, mark, f, c, g, d, h
Defined Pair Symbols:
ACTIVE, MARK, F, C, G, D, H
Compound Symbols:
c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c1
(23) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
h(
z0)) →
c3(
MARK(
c(
d(
z0))),
C(
d(
z0)),
D(
z0)) by
ACTIVE(h(x0)) → c3(MARK(c(d(x0))), D(x0))
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
c(mark(z0)) → c(z0)
c(active(z0)) → c(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
d(mark(z0)) → d(z0)
d(active(z0)) → d(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
ACTIVE(f(f(x0))) → c1(MARK(c(f(g(f(x0))))), F(x0))
ACTIVE(h(x0)) → c3(MARK(c(d(x0))), D(x0))
S tuples:
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
K tuples:
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
G(active(z0)) → c14(G(z0))
G(mark(z0)) → c13(G(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
Defined Rule Symbols:
active, mark, f, c, g, d, h
Defined Pair Symbols:
ACTIVE, MARK, F, C, G, D, H
Compound Symbols:
c2, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c1, c3
(25) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
MARK(
f(
z0)) →
c4(
ACTIVE(
f(
mark(
z0))),
F(
mark(
z0)),
MARK(
z0)) by
MARK(f(z0)) → c4(ACTIVE(f(z0)), F(mark(z0)), MARK(z0))
MARK(f(f(z0))) → c4(ACTIVE(f(active(f(mark(z0))))), F(mark(f(z0))), MARK(f(z0)))
MARK(f(c(z0))) → c4(ACTIVE(f(active(c(z0)))), F(mark(c(z0))), MARK(c(z0)))
MARK(f(g(z0))) → c4(ACTIVE(f(active(g(z0)))), F(mark(g(z0))), MARK(g(z0)))
MARK(f(d(z0))) → c4(ACTIVE(f(active(d(z0)))), F(mark(d(z0))), MARK(d(z0)))
MARK(f(h(z0))) → c4(ACTIVE(f(active(h(mark(z0))))), F(mark(h(z0))), MARK(h(z0)))
MARK(f(x0)) → c4
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
c(mark(z0)) → c(z0)
c(active(z0)) → c(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
d(mark(z0)) → d(z0)
d(active(z0)) → d(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
ACTIVE(f(f(x0))) → c1(MARK(c(f(g(f(x0))))), F(x0))
ACTIVE(h(x0)) → c3(MARK(c(d(x0))), D(x0))
MARK(f(z0)) → c4(ACTIVE(f(z0)), F(mark(z0)), MARK(z0))
MARK(f(f(z0))) → c4(ACTIVE(f(active(f(mark(z0))))), F(mark(f(z0))), MARK(f(z0)))
MARK(f(c(z0))) → c4(ACTIVE(f(active(c(z0)))), F(mark(c(z0))), MARK(c(z0)))
MARK(f(g(z0))) → c4(ACTIVE(f(active(g(z0)))), F(mark(g(z0))), MARK(g(z0)))
MARK(f(d(z0))) → c4(ACTIVE(f(active(d(z0)))), F(mark(d(z0))), MARK(d(z0)))
MARK(f(h(z0))) → c4(ACTIVE(f(active(h(mark(z0))))), F(mark(h(z0))), MARK(h(z0)))
MARK(f(x0)) → c4
S tuples:
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
K tuples:
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(f(z0)) → c4(ACTIVE(f(mark(z0))), F(mark(z0)), MARK(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
ACTIVE(f(f(z0))) → c1(MARK(c(f(g(f(z0))))), C(f(g(f(z0)))), F(g(f(z0))), G(f(z0)), F(z0))
ACTIVE(h(z0)) → c3(MARK(c(d(z0))), C(d(z0)), D(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
G(active(z0)) → c14(G(z0))
G(mark(z0)) → c13(G(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
Defined Rule Symbols:
active, mark, f, c, g, d, h
Defined Pair Symbols:
ACTIVE, MARK, F, C, G, D, H
Compound Symbols:
c2, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c1, c3, c4, c4
(27) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
MARK(f(x0)) → c4
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
c(mark(z0)) → c(z0)
c(active(z0)) → c(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
d(mark(z0)) → d(z0)
d(active(z0)) → d(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
ACTIVE(f(f(x0))) → c1(MARK(c(f(g(f(x0))))), F(x0))
ACTIVE(h(x0)) → c3(MARK(c(d(x0))), D(x0))
MARK(f(z0)) → c4(ACTIVE(f(z0)), F(mark(z0)), MARK(z0))
MARK(f(f(z0))) → c4(ACTIVE(f(active(f(mark(z0))))), F(mark(f(z0))), MARK(f(z0)))
MARK(f(c(z0))) → c4(ACTIVE(f(active(c(z0)))), F(mark(c(z0))), MARK(c(z0)))
MARK(f(g(z0))) → c4(ACTIVE(f(active(g(z0)))), F(mark(g(z0))), MARK(g(z0)))
MARK(f(d(z0))) → c4(ACTIVE(f(active(d(z0)))), F(mark(d(z0))), MARK(d(z0)))
MARK(f(h(z0))) → c4(ACTIVE(f(active(h(mark(z0))))), F(mark(h(z0))), MARK(h(z0)))
S tuples:
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
K tuples:
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
G(active(z0)) → c14(G(z0))
G(mark(z0)) → c13(G(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
Defined Rule Symbols:
active, mark, f, c, g, d, h
Defined Pair Symbols:
ACTIVE, MARK, F, C, G, D, H
Compound Symbols:
c2, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c1, c3, c4
(29) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
MARK(
g(
z0)) →
c6(
ACTIVE(
g(
z0)),
G(
z0)) by
MARK(g(x0)) → c6(G(x0))
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
c(mark(z0)) → c(z0)
c(active(z0)) → c(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
d(mark(z0)) → d(z0)
d(active(z0)) → d(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
ACTIVE(f(f(x0))) → c1(MARK(c(f(g(f(x0))))), F(x0))
ACTIVE(h(x0)) → c3(MARK(c(d(x0))), D(x0))
MARK(f(z0)) → c4(ACTIVE(f(z0)), F(mark(z0)), MARK(z0))
MARK(f(f(z0))) → c4(ACTIVE(f(active(f(mark(z0))))), F(mark(f(z0))), MARK(f(z0)))
MARK(f(c(z0))) → c4(ACTIVE(f(active(c(z0)))), F(mark(c(z0))), MARK(c(z0)))
MARK(f(g(z0))) → c4(ACTIVE(f(active(g(z0)))), F(mark(g(z0))), MARK(g(z0)))
MARK(f(d(z0))) → c4(ACTIVE(f(active(d(z0)))), F(mark(d(z0))), MARK(d(z0)))
MARK(f(h(z0))) → c4(ACTIVE(f(active(h(mark(z0))))), F(mark(h(z0))), MARK(h(z0)))
MARK(g(x0)) → c6(G(x0))
S tuples:
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
K tuples:
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
G(active(z0)) → c14(G(z0))
G(mark(z0)) → c13(G(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
Defined Rule Symbols:
active, mark, f, c, g, d, h
Defined Pair Symbols:
ACTIVE, MARK, F, C, G, D, H
Compound Symbols:
c2, c5, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c1, c3, c4, c6
(31) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
MARK(
d(
z0)) →
c7(
ACTIVE(
d(
z0)),
D(
z0)) by
MARK(d(x0)) → c7(D(x0))
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
c(mark(z0)) → c(z0)
c(active(z0)) → c(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
d(mark(z0)) → d(z0)
d(active(z0)) → d(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
ACTIVE(f(f(x0))) → c1(MARK(c(f(g(f(x0))))), F(x0))
ACTIVE(h(x0)) → c3(MARK(c(d(x0))), D(x0))
MARK(f(z0)) → c4(ACTIVE(f(z0)), F(mark(z0)), MARK(z0))
MARK(f(f(z0))) → c4(ACTIVE(f(active(f(mark(z0))))), F(mark(f(z0))), MARK(f(z0)))
MARK(f(c(z0))) → c4(ACTIVE(f(active(c(z0)))), F(mark(c(z0))), MARK(c(z0)))
MARK(f(g(z0))) → c4(ACTIVE(f(active(g(z0)))), F(mark(g(z0))), MARK(g(z0)))
MARK(f(d(z0))) → c4(ACTIVE(f(active(d(z0)))), F(mark(d(z0))), MARK(d(z0)))
MARK(f(h(z0))) → c4(ACTIVE(f(active(h(mark(z0))))), F(mark(h(z0))), MARK(h(z0)))
MARK(g(x0)) → c6(G(x0))
MARK(d(x0)) → c7(D(x0))
S tuples:
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
K tuples:
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
G(active(z0)) → c14(G(z0))
G(mark(z0)) → c13(G(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
Defined Rule Symbols:
active, mark, f, c, g, d, h
Defined Pair Symbols:
ACTIVE, MARK, F, C, G, D, H
Compound Symbols:
c2, c5, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c1, c3, c4, c6, c7
(33) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
MARK(
h(
z0)) →
c8(
ACTIVE(
h(
mark(
z0))),
H(
mark(
z0)),
MARK(
z0)) by
MARK(h(z0)) → c8(ACTIVE(h(z0)), H(mark(z0)), MARK(z0))
MARK(h(f(z0))) → c8(ACTIVE(h(active(f(mark(z0))))), H(mark(f(z0))), MARK(f(z0)))
MARK(h(c(z0))) → c8(ACTIVE(h(active(c(z0)))), H(mark(c(z0))), MARK(c(z0)))
MARK(h(g(z0))) → c8(ACTIVE(h(active(g(z0)))), H(mark(g(z0))), MARK(g(z0)))
MARK(h(d(z0))) → c8(ACTIVE(h(active(d(z0)))), H(mark(d(z0))), MARK(d(z0)))
MARK(h(h(z0))) → c8(ACTIVE(h(active(h(mark(z0))))), H(mark(h(z0))), MARK(h(z0)))
MARK(h(x0)) → c8
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
c(mark(z0)) → c(z0)
c(active(z0)) → c(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
d(mark(z0)) → d(z0)
d(active(z0)) → d(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
ACTIVE(f(f(x0))) → c1(MARK(c(f(g(f(x0))))), F(x0))
ACTIVE(h(x0)) → c3(MARK(c(d(x0))), D(x0))
MARK(f(z0)) → c4(ACTIVE(f(z0)), F(mark(z0)), MARK(z0))
MARK(f(f(z0))) → c4(ACTIVE(f(active(f(mark(z0))))), F(mark(f(z0))), MARK(f(z0)))
MARK(f(c(z0))) → c4(ACTIVE(f(active(c(z0)))), F(mark(c(z0))), MARK(c(z0)))
MARK(f(g(z0))) → c4(ACTIVE(f(active(g(z0)))), F(mark(g(z0))), MARK(g(z0)))
MARK(f(d(z0))) → c4(ACTIVE(f(active(d(z0)))), F(mark(d(z0))), MARK(d(z0)))
MARK(f(h(z0))) → c4(ACTIVE(f(active(h(mark(z0))))), F(mark(h(z0))), MARK(h(z0)))
MARK(g(x0)) → c6(G(x0))
MARK(d(x0)) → c7(D(x0))
MARK(h(z0)) → c8(ACTIVE(h(z0)), H(mark(z0)), MARK(z0))
MARK(h(f(z0))) → c8(ACTIVE(h(active(f(mark(z0))))), H(mark(f(z0))), MARK(f(z0)))
MARK(h(c(z0))) → c8(ACTIVE(h(active(c(z0)))), H(mark(c(z0))), MARK(c(z0)))
MARK(h(g(z0))) → c8(ACTIVE(h(active(g(z0)))), H(mark(g(z0))), MARK(g(z0)))
MARK(h(d(z0))) → c8(ACTIVE(h(active(d(z0)))), H(mark(d(z0))), MARK(d(z0)))
MARK(h(h(z0))) → c8(ACTIVE(h(active(h(mark(z0))))), H(mark(h(z0))), MARK(h(z0)))
MARK(h(x0)) → c8
S tuples:
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
K tuples:
MARK(g(z0)) → c6(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c8(ACTIVE(h(mark(z0))), H(mark(z0)), MARK(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
MARK(d(z0)) → c7(ACTIVE(d(z0)), D(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
G(active(z0)) → c14(G(z0))
G(mark(z0)) → c13(G(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
Defined Rule Symbols:
active, mark, f, c, g, d, h
Defined Pair Symbols:
ACTIVE, MARK, F, C, G, D, H
Compound Symbols:
c2, c5, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c1, c3, c4, c6, c7, c8, c8
(35) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
MARK(h(x0)) → c8
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(z0))) → mark(c(f(g(f(z0)))))
active(c(z0)) → mark(d(z0))
active(h(z0)) → mark(c(d(z0)))
mark(f(z0)) → active(f(mark(z0)))
mark(c(z0)) → active(c(z0))
mark(g(z0)) → active(g(z0))
mark(d(z0)) → active(d(z0))
mark(h(z0)) → active(h(mark(z0)))
f(mark(z0)) → f(z0)
f(active(z0)) → f(z0)
c(mark(z0)) → c(z0)
c(active(z0)) → c(z0)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
d(mark(z0)) → d(z0)
d(active(z0)) → d(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
G(mark(z0)) → c13(G(z0))
G(active(z0)) → c14(G(z0))
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
ACTIVE(f(f(x0))) → c1(MARK(c(f(g(f(x0))))), F(x0))
ACTIVE(h(x0)) → c3(MARK(c(d(x0))), D(x0))
MARK(f(z0)) → c4(ACTIVE(f(z0)), F(mark(z0)), MARK(z0))
MARK(f(f(z0))) → c4(ACTIVE(f(active(f(mark(z0))))), F(mark(f(z0))), MARK(f(z0)))
MARK(f(c(z0))) → c4(ACTIVE(f(active(c(z0)))), F(mark(c(z0))), MARK(c(z0)))
MARK(f(g(z0))) → c4(ACTIVE(f(active(g(z0)))), F(mark(g(z0))), MARK(g(z0)))
MARK(f(d(z0))) → c4(ACTIVE(f(active(d(z0)))), F(mark(d(z0))), MARK(d(z0)))
MARK(f(h(z0))) → c4(ACTIVE(f(active(h(mark(z0))))), F(mark(h(z0))), MARK(h(z0)))
MARK(g(x0)) → c6(G(x0))
MARK(d(x0)) → c7(D(x0))
MARK(h(z0)) → c8(ACTIVE(h(z0)), H(mark(z0)), MARK(z0))
MARK(h(f(z0))) → c8(ACTIVE(h(active(f(mark(z0))))), H(mark(f(z0))), MARK(f(z0)))
MARK(h(c(z0))) → c8(ACTIVE(h(active(c(z0)))), H(mark(c(z0))), MARK(c(z0)))
MARK(h(g(z0))) → c8(ACTIVE(h(active(g(z0)))), H(mark(g(z0))), MARK(g(z0)))
MARK(h(d(z0))) → c8(ACTIVE(h(active(d(z0)))), H(mark(d(z0))), MARK(d(z0)))
MARK(h(h(z0))) → c8(ACTIVE(h(active(h(mark(z0))))), H(mark(h(z0))), MARK(h(z0)))
S tuples:
D(mark(z0)) → c15(D(z0))
D(active(z0)) → c16(D(z0))
K tuples:
MARK(c(z0)) → c5(ACTIVE(c(z0)), C(z0))
ACTIVE(c(z0)) → c2(MARK(d(z0)), D(z0))
C(mark(z0)) → c11(C(z0))
C(active(z0)) → c12(C(z0))
H(mark(z0)) → c17(H(z0))
H(active(z0)) → c18(H(z0))
G(active(z0)) → c14(G(z0))
G(mark(z0)) → c13(G(z0))
F(mark(z0)) → c9(F(z0))
F(active(z0)) → c10(F(z0))
Defined Rule Symbols:
active, mark, f, c, g, d, h
Defined Pair Symbols:
ACTIVE, MARK, F, C, G, D, H
Compound Symbols:
c2, c5, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c1, c3, c4, c6, c7, c8
(37) CpxTrsMatchBoundsProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 0.
The certificate found is represented by the following graph.
Start state: 3931
Accept states: [3932, 3933, 3934, 3935, 3936, 3937, 3938]
Transitions:
3931→3932[active_1|0]
3931→3933[mark_1|0]
3931→3934[f_1|0]
3931→3935[c_1|0]
3931→3936[g_1|0]
3931→3937[d_1|0]
3931→3938[h_1|0]
(38) BOUNDS(O(1), O(n^1))