We consider the following Problem: Strict Trs: { f(f(X)) -> c(n__f(g(n__f(X)))) , c(X) -> d(activate(X)) , h(X) -> c(n__d(X)) , f(X) -> n__f(X) , d(X) -> n__d(X) , activate(n__f(X)) -> f(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: Arguments of following rules are not normal-forms: {f(f(X)) -> c(n__f(g(n__f(X))))} All above mentioned rules can be savely removed. We consider the following Problem: Strict Trs: { c(X) -> d(activate(X)) , h(X) -> c(n__d(X)) , f(X) -> n__f(X) , d(X) -> n__d(X) , activate(n__f(X)) -> f(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { h(X) -> c(n__d(X)) , d(X) -> n__d(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {}, Uargs(c) = {}, Uargs(n__f) = {}, Uargs(g) = {}, Uargs(d) = {1}, Uargs(activate) = {}, Uargs(h) = {}, Uargs(n__d) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [0 0] x1 + [0] [0 0] [0] c(x1) = [1 0] x1 + [1] [1 0] [1] n__f(x1) = [0 0] x1 + [0] [0 0] [0] g(x1) = [0 0] x1 + [0] [0 0] [0] d(x1) = [1 0] x1 + [1] [1 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] h(x1) = [1 0] x1 + [2] [1 0] [2] n__d(x1) = [1 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { c(X) -> d(activate(X)) , f(X) -> n__f(X) , activate(n__f(X)) -> f(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Weak Trs: { h(X) -> c(n__d(X)) , d(X) -> n__d(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {f(X) -> n__f(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {}, Uargs(c) = {}, Uargs(n__f) = {}, Uargs(g) = {}, Uargs(d) = {1}, Uargs(activate) = {}, Uargs(h) = {}, Uargs(n__d) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [0 0] x1 + [2] [0 0] [0] c(x1) = [1 0] x1 + [1] [0 0] [1] n__f(x1) = [0 0] x1 + [0] [0 0] [0] g(x1) = [1 0] x1 + [0] [1 0] [0] d(x1) = [1 0] x1 + [1] [1 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] h(x1) = [1 0] x1 + [1] [0 0] [2] n__d(x1) = [1 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { c(X) -> d(activate(X)) , activate(n__f(X)) -> f(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Weak Trs: { f(X) -> n__f(X) , h(X) -> c(n__d(X)) , d(X) -> n__d(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {c(X) -> d(activate(X))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {}, Uargs(c) = {}, Uargs(n__f) = {}, Uargs(g) = {}, Uargs(d) = {1}, Uargs(activate) = {}, Uargs(h) = {}, Uargs(n__d) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [0 0] x1 + [0] [0 0] [0] c(x1) = [1 0] x1 + [3] [1 0] [1] n__f(x1) = [0 0] x1 + [0] [0 0] [0] g(x1) = [1 0] x1 + [0] [1 0] [0] d(x1) = [1 0] x1 + [1] [1 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] h(x1) = [1 0] x1 + [3] [1 0] [2] n__d(x1) = [1 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { activate(n__f(X)) -> f(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Weak Trs: { c(X) -> d(activate(X)) , f(X) -> n__f(X) , h(X) -> c(n__d(X)) , d(X) -> n__d(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { activate(n__f(X)) -> f(X) , activate(n__d(X)) -> d(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {}, Uargs(c) = {}, Uargs(n__f) = {}, Uargs(g) = {}, Uargs(d) = {1}, Uargs(activate) = {}, Uargs(h) = {}, Uargs(n__d) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [0 0] x1 + [0] [0 0] [0] c(x1) = [1 0] x1 + [1] [0 0] [1] n__f(x1) = [0 0] x1 + [0] [0 0] [0] g(x1) = [0 0] x1 + [0] [0 0] [0] d(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [1] [0 0] [1] h(x1) = [1 0] x1 + [2] [0 0] [2] n__d(x1) = [1 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {activate(X) -> X} Weak Trs: { activate(n__f(X)) -> f(X) , activate(n__d(X)) -> d(X) , c(X) -> d(activate(X)) , f(X) -> n__f(X) , h(X) -> c(n__d(X)) , d(X) -> n__d(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(X) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {}, Uargs(c) = {}, Uargs(n__f) = {}, Uargs(g) = {}, Uargs(d) = {1}, Uargs(activate) = {}, Uargs(h) = {}, Uargs(n__d) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [0 0] x1 + [0] [0 0] [0] c(x1) = [1 0] x1 + [1] [0 1] [1] n__f(x1) = [0 0] x1 + [0] [0 0] [0] g(x1) = [0 0] x1 + [0] [0 0] [0] d(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [1] [0 1] [1] h(x1) = [1 0] x1 + [2] [0 0] [2] n__d(x1) = [1 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Weak Trs: { activate(X) -> X , activate(n__f(X)) -> f(X) , activate(n__d(X)) -> d(X) , c(X) -> d(activate(X)) , f(X) -> n__f(X) , h(X) -> c(n__d(X)) , d(X) -> n__d(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(X) -> X , activate(n__f(X)) -> f(X) , activate(n__d(X)) -> d(X) , c(X) -> d(activate(X)) , f(X) -> n__f(X) , h(X) -> c(n__d(X)) , d(X) -> n__d(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))