We consider the following Problem:
Strict Trs:
{ a__f(f(X)) -> a__c(f(g(f(X))))
, a__c(X) -> d(X)
, a__h(X) -> a__c(d(X))
, mark(f(X)) -> a__f(mark(X))
, mark(c(X)) -> a__c(X)
, mark(h(X)) -> a__h(mark(X))
, mark(g(X)) -> g(X)
, mark(d(X)) -> d(X)
, a__f(X) -> f(X)
, a__c(X) -> c(X)
, a__h(X) -> h(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
We consider the following Problem:
Strict Trs:
{ a__f(f(X)) -> a__c(f(g(f(X))))
, a__c(X) -> d(X)
, a__h(X) -> a__c(d(X))
, mark(f(X)) -> a__f(mark(X))
, mark(c(X)) -> a__c(X)
, mark(h(X)) -> a__h(mark(X))
, mark(g(X)) -> g(X)
, mark(d(X)) -> d(X)
, a__f(X) -> f(X)
, a__c(X) -> c(X)
, a__h(X) -> h(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component:
{ a__c(X) -> d(X)
, mark(g(X)) -> g(X)
, mark(d(X)) -> d(X)
, a__f(X) -> f(X)
, a__c(X) -> c(X)}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(a__f) = {1}, Uargs(f) = {}, Uargs(a__c) = {}, Uargs(g) = {},
Uargs(d) = {}, Uargs(a__h) = {1}, Uargs(mark) = {}, Uargs(c) = {},
Uargs(h) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
a__f(x1) = [1 0] x1 + [1]
[0 0] [1]
f(x1) = [0 0] x1 + [0]
[0 0] [0]
a__c(x1) = [0 0] x1 + [1]
[0 0] [1]
g(x1) = [0 0] x1 + [0]
[0 0] [0]
d(x1) = [0 0] x1 + [0]
[0 0] [0]
a__h(x1) = [1 0] x1 + [0]
[0 0] [1]
mark(x1) = [0 0] x1 + [1]
[0 0] [1]
c(x1) = [0 0] x1 + [0]
[0 0] [0]
h(x1) = [0 0] x1 + [0]
[0 0] [0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ a__f(f(X)) -> a__c(f(g(f(X))))
, a__h(X) -> a__c(d(X))
, mark(f(X)) -> a__f(mark(X))
, mark(c(X)) -> a__c(X)
, mark(h(X)) -> a__h(mark(X))
, a__h(X) -> h(X)}
Weak Trs:
{ a__c(X) -> d(X)
, mark(g(X)) -> g(X)
, mark(d(X)) -> d(X)
, a__f(X) -> f(X)
, a__c(X) -> c(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component:
{ a__h(X) -> a__c(d(X))
, a__h(X) -> h(X)}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(a__f) = {1}, Uargs(f) = {}, Uargs(a__c) = {}, Uargs(g) = {},
Uargs(d) = {}, Uargs(a__h) = {1}, Uargs(mark) = {}, Uargs(c) = {},
Uargs(h) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
a__f(x1) = [1 0] x1 + [1]
[0 0] [1]
f(x1) = [0 0] x1 + [0]
[0 0] [0]
a__c(x1) = [0 0] x1 + [1]
[0 0] [1]
g(x1) = [0 0] x1 + [0]
[0 0] [0]
d(x1) = [0 0] x1 + [0]
[0 0] [0]
a__h(x1) = [1 0] x1 + [2]
[0 0] [1]
mark(x1) = [0 0] x1 + [1]
[0 0] [1]
c(x1) = [0 0] x1 + [0]
[0 0] [0]
h(x1) = [0 0] x1 + [0]
[0 0] [0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ a__f(f(X)) -> a__c(f(g(f(X))))
, mark(f(X)) -> a__f(mark(X))
, mark(c(X)) -> a__c(X)
, mark(h(X)) -> a__h(mark(X))}
Weak Trs:
{ a__h(X) -> a__c(d(X))
, a__h(X) -> h(X)
, a__c(X) -> d(X)
, mark(g(X)) -> g(X)
, mark(d(X)) -> d(X)
, a__f(X) -> f(X)
, a__c(X) -> c(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {mark(c(X)) -> a__c(X)}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(a__f) = {1}, Uargs(f) = {}, Uargs(a__c) = {}, Uargs(g) = {},
Uargs(d) = {}, Uargs(a__h) = {1}, Uargs(mark) = {}, Uargs(c) = {},
Uargs(h) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
a__f(x1) = [1 1] x1 + [1]
[0 0] [1]
f(x1) = [0 0] x1 + [0]
[0 0] [0]
a__c(x1) = [0 0] x1 + [1]
[0 0] [1]
g(x1) = [0 0] x1 + [0]
[0 0] [0]
d(x1) = [0 0] x1 + [0]
[0 0] [0]
a__h(x1) = [1 1] x1 + [1]
[0 0] [1]
mark(x1) = [0 0] x1 + [2]
[0 0] [2]
c(x1) = [0 0] x1 + [0]
[0 0] [0]
h(x1) = [0 0] x1 + [0]
[0 0] [0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ a__f(f(X)) -> a__c(f(g(f(X))))
, mark(f(X)) -> a__f(mark(X))
, mark(h(X)) -> a__h(mark(X))}
Weak Trs:
{ mark(c(X)) -> a__c(X)
, a__h(X) -> a__c(d(X))
, a__h(X) -> h(X)
, a__c(X) -> d(X)
, mark(g(X)) -> g(X)
, mark(d(X)) -> d(X)
, a__f(X) -> f(X)
, a__c(X) -> c(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {a__f(f(X)) -> a__c(f(g(f(X))))}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(a__f) = {1}, Uargs(f) = {}, Uargs(a__c) = {}, Uargs(g) = {},
Uargs(d) = {}, Uargs(a__h) = {1}, Uargs(mark) = {}, Uargs(c) = {},
Uargs(h) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
a__f(x1) = [1 2] x1 + [1]
[0 0] [1]
f(x1) = [0 0] x1 + [0]
[0 0] [0]
a__c(x1) = [0 0] x1 + [0]
[0 0] [1]
g(x1) = [0 0] x1 + [0]
[0 0] [0]
d(x1) = [0 0] x1 + [0]
[0 0] [0]
a__h(x1) = [1 2] x1 + [3]
[0 0] [1]
mark(x1) = [0 0] x1 + [1]
[0 0] [2]
c(x1) = [0 0] x1 + [0]
[0 0] [0]
h(x1) = [0 0] x1 + [0]
[0 0] [0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ mark(f(X)) -> a__f(mark(X))
, mark(h(X)) -> a__h(mark(X))}
Weak Trs:
{ a__f(f(X)) -> a__c(f(g(f(X))))
, mark(c(X)) -> a__c(X)
, a__h(X) -> a__c(d(X))
, a__h(X) -> h(X)
, a__c(X) -> d(X)
, mark(g(X)) -> g(X)
, mark(d(X)) -> d(X)
, a__f(X) -> f(X)
, a__c(X) -> c(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {mark(f(X)) -> a__f(mark(X))}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(a__f) = {1}, Uargs(f) = {}, Uargs(a__c) = {}, Uargs(g) = {},
Uargs(d) = {}, Uargs(a__h) = {1}, Uargs(mark) = {}, Uargs(c) = {},
Uargs(h) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
a__f(x1) = [1 0] x1 + [0]
[0 1] [1]
f(x1) = [0 0] x1 + [0]
[0 1] [1]
a__c(x1) = [0 0] x1 + [0]
[0 0] [0]
g(x1) = [0 0] x1 + [0]
[0 0] [0]
d(x1) = [0 0] x1 + [0]
[0 0] [0]
a__h(x1) = [1 0] x1 + [3]
[0 1] [1]
mark(x1) = [0 1] x1 + [1]
[0 1] [0]
c(x1) = [0 0] x1 + [0]
[0 0] [0]
h(x1) = [0 0] x1 + [0]
[0 1] [0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs: {mark(h(X)) -> a__h(mark(X))}
Weak Trs:
{ mark(f(X)) -> a__f(mark(X))
, a__f(f(X)) -> a__c(f(g(f(X))))
, mark(c(X)) -> a__c(X)
, a__h(X) -> a__c(d(X))
, a__h(X) -> h(X)
, a__c(X) -> d(X)
, mark(g(X)) -> g(X)
, mark(d(X)) -> d(X)
, a__f(X) -> f(X)
, a__c(X) -> c(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {mark(h(X)) -> a__h(mark(X))}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(a__f) = {1}, Uargs(f) = {}, Uargs(a__c) = {}, Uargs(g) = {},
Uargs(d) = {}, Uargs(a__h) = {1}, Uargs(mark) = {}, Uargs(c) = {},
Uargs(h) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
a__f(x1) = [1 0] x1 + [0]
[0 1] [0]
f(x1) = [0 0] x1 + [0]
[0 1] [0]
a__c(x1) = [0 0] x1 + [0]
[0 0] [0]
g(x1) = [0 0] x1 + [0]
[0 0] [0]
d(x1) = [0 0] x1 + [0]
[0 0] [0]
a__h(x1) = [1 0] x1 + [1]
[0 1] [1]
mark(x1) = [0 2] x1 + [3]
[0 1] [0]
c(x1) = [0 0] x1 + [0]
[0 0] [0]
h(x1) = [0 0] x1 + [0]
[0 1] [1]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Weak Trs:
{ mark(h(X)) -> a__h(mark(X))
, mark(f(X)) -> a__f(mark(X))
, a__f(f(X)) -> a__c(f(g(f(X))))
, mark(c(X)) -> a__c(X)
, a__h(X) -> a__c(d(X))
, a__h(X) -> h(X)
, a__c(X) -> d(X)
, mark(g(X)) -> g(X)
, mark(d(X)) -> d(X)
, a__f(X) -> f(X)
, a__c(X) -> c(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(O(1),O(1))
Proof:
We consider the following Problem:
Weak Trs:
{ mark(h(X)) -> a__h(mark(X))
, mark(f(X)) -> a__f(mark(X))
, a__f(f(X)) -> a__c(f(g(f(X))))
, mark(c(X)) -> a__c(X)
, a__h(X) -> a__c(d(X))
, a__h(X) -> h(X)
, a__c(X) -> d(X)
, mark(g(X)) -> g(X)
, mark(d(X)) -> d(X)
, a__f(X) -> f(X)
, a__c(X) -> c(X)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(O(1),O(1))
Proof:
Empty rules are trivially bounded
Hurray, we answered YES(?,O(n^1))