We consider the following Problem: Strict Trs: { f(f(X)) -> c(n__f(n__g(n__f(X)))) , c(X) -> d(activate(X)) , h(X) -> c(n__d(X)) , f(X) -> n__f(X) , g(X) -> n__g(X) , d(X) -> n__d(X) , activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: Arguments of following rules are not normal-forms: {f(f(X)) -> c(n__f(n__g(n__f(X))))} All above mentioned rules can be savely removed. We consider the following Problem: Strict Trs: { c(X) -> d(activate(X)) , h(X) -> c(n__d(X)) , f(X) -> n__f(X) , g(X) -> n__g(X) , d(X) -> n__d(X) , activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { h(X) -> c(n__d(X)) , f(X) -> n__f(X) , d(X) -> n__d(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1}, Uargs(c) = {}, Uargs(n__f) = {}, Uargs(n__g) = {}, Uargs(d) = {1}, Uargs(activate) = {}, Uargs(h) = {}, Uargs(n__d) = {}, Uargs(g) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [1 0] x1 + [1] [0 0] [1] c(x1) = [1 0] x1 + [1] [1 0] [1] n__f(x1) = [1 0] x1 + [0] [0 0] [0] n__g(x1) = [0 0] x1 + [0] [0 0] [0] d(x1) = [1 0] x1 + [1] [1 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] h(x1) = [1 0] x1 + [2] [1 0] [1] n__d(x1) = [1 0] x1 + [0] [0 0] [0] g(x1) = [0 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { c(X) -> d(activate(X)) , g(X) -> n__g(X) , activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Weak Trs: { h(X) -> c(n__d(X)) , f(X) -> n__f(X) , d(X) -> n__d(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {g(X) -> n__g(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1}, Uargs(c) = {}, Uargs(n__f) = {}, Uargs(n__g) = {}, Uargs(d) = {1}, Uargs(activate) = {}, Uargs(h) = {}, Uargs(n__d) = {}, Uargs(g) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [1 0] x1 + [1] [0 0] [1] c(x1) = [1 0] x1 + [1] [1 0] [1] n__f(x1) = [1 0] x1 + [0] [0 0] [0] n__g(x1) = [0 0] x1 + [0] [0 0] [0] d(x1) = [1 0] x1 + [1] [1 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] h(x1) = [1 0] x1 + [2] [1 0] [2] n__d(x1) = [1 0] x1 + [0] [0 0] [0] g(x1) = [0 0] x1 + [2] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { c(X) -> d(activate(X)) , activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Weak Trs: { g(X) -> n__g(X) , h(X) -> c(n__d(X)) , f(X) -> n__f(X) , d(X) -> n__d(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {c(X) -> d(activate(X))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1}, Uargs(c) = {}, Uargs(n__f) = {}, Uargs(n__g) = {}, Uargs(d) = {1}, Uargs(activate) = {}, Uargs(h) = {}, Uargs(n__d) = {}, Uargs(g) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [1 0] x1 + [1] [0 0] [1] c(x1) = [1 0] x1 + [3] [1 0] [1] n__f(x1) = [1 0] x1 + [0] [0 0] [0] n__g(x1) = [0 0] x1 + [0] [0 0] [0] d(x1) = [1 0] x1 + [1] [1 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] h(x1) = [1 0] x1 + [3] [1 0] [2] n__d(x1) = [1 0] x1 + [0] [0 0] [0] g(x1) = [0 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Weak Trs: { c(X) -> d(activate(X)) , g(X) -> n__g(X) , h(X) -> c(n__d(X)) , f(X) -> n__f(X) , d(X) -> n__d(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1}, Uargs(c) = {}, Uargs(n__f) = {}, Uargs(n__g) = {}, Uargs(d) = {1}, Uargs(activate) = {}, Uargs(h) = {}, Uargs(n__d) = {}, Uargs(g) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [1 0] x1 + [0] [0 0] [1] c(x1) = [1 0] x1 + [1] [0 0] [1] n__f(x1) = [1 0] x1 + [0] [0 0] [0] n__g(x1) = [0 0] x1 + [0] [0 0] [0] d(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [1] [1 0] [1] h(x1) = [1 0] x1 + [2] [0 0] [2] n__d(x1) = [1 0] x1 + [0] [0 0] [0] g(x1) = [0 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { activate(n__f(X)) -> f(activate(X)) , activate(X) -> X} Weak Trs: { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , c(X) -> d(activate(X)) , g(X) -> n__g(X) , h(X) -> c(n__d(X)) , f(X) -> n__f(X) , d(X) -> n__d(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(X) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1}, Uargs(c) = {}, Uargs(n__f) = {}, Uargs(n__g) = {}, Uargs(d) = {1}, Uargs(activate) = {}, Uargs(h) = {}, Uargs(n__d) = {}, Uargs(g) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [1 0] x1 + [0] [0 0] [1] c(x1) = [1 0] x1 + [1] [0 1] [1] n__f(x1) = [1 0] x1 + [0] [0 0] [0] n__g(x1) = [0 0] x1 + [0] [0 0] [0] d(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [1] [0 1] [1] h(x1) = [1 0] x1 + [1] [0 0] [2] n__d(x1) = [1 0] x1 + [0] [0 0] [0] g(x1) = [0 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {activate(n__f(X)) -> f(activate(X))} Weak Trs: { activate(X) -> X , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , c(X) -> d(activate(X)) , g(X) -> n__g(X) , h(X) -> c(n__d(X)) , f(X) -> n__f(X) , d(X) -> n__d(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: {activate(n__f(X)) -> f(activate(X))} Weak Trs: { activate(X) -> X , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , c(X) -> d(activate(X)) , g(X) -> n__g(X) , h(X) -> c(n__d(X)) , f(X) -> n__f(X) , d(X) -> n__d(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { f_0(2) -> 1 , f_1(3) -> 1 , f_1(3) -> 3 , c_0(2) -> 1 , c_1(4) -> 1 , n__f_0(2) -> 1 , n__f_0(2) -> 2 , n__f_0(2) -> 3 , n__f_1(3) -> 1 , n__f_1(3) -> 3 , n__g_0(2) -> 1 , n__g_0(2) -> 2 , n__g_0(2) -> 3 , n__g_1(2) -> 3 , d_0(1) -> 1 , d_0(2) -> 1 , d_1(2) -> 3 , d_1(3) -> 1 , activate_0(2) -> 1 , activate_1(2) -> 3 , activate_1(4) -> 3 , h_0(2) -> 1 , n__d_0(1) -> 1 , n__d_0(2) -> 1 , n__d_0(2) -> 2 , n__d_0(2) -> 3 , n__d_1(2) -> 3 , n__d_1(2) -> 4 , n__d_1(3) -> 1 , g_0(2) -> 1 , g_1(2) -> 3} Hurray, we answered YES(?,O(n^1))