(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(f(a)) → c(n__f(g(f(a))))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(a)) → c(n__f(g(f(a))))
f(z0) → n__f(z0)
activate(n__f(z0)) → f(z0)
activate(z0) → z0
Tuples:

F(f(a)) → c1(F(a))
ACTIVATE(n__f(z0)) → c3(F(z0))
S tuples:

F(f(a)) → c1(F(a))
ACTIVATE(n__f(z0)) → c3(F(z0))
K tuples:none
Defined Rule Symbols:

f, activate

Defined Pair Symbols:

F, ACTIVATE

Compound Symbols:

c1, c3

(3) CdtUnreachableProof (EQUIVALENT transformation)

The following tuples could be removed as they are not reachable from basic start terms:

F(f(a)) → c1(F(a))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(a)) → c(n__f(g(f(a))))
f(z0) → n__f(z0)
activate(n__f(z0)) → f(z0)
activate(z0) → z0
Tuples:

ACTIVATE(n__f(z0)) → c3(F(z0))
S tuples:

ACTIVATE(n__f(z0)) → c3(F(z0))
K tuples:none
Defined Rule Symbols:

f, activate

Defined Pair Symbols:

ACTIVATE

Compound Symbols:

c3

(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

ACTIVATE(n__f(z0)) → c3(F(z0))

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(a)) → c(n__f(g(f(a))))
f(z0) → n__f(z0)
activate(n__f(z0)) → f(z0)
activate(z0) → z0
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

f, activate

Defined Pair Symbols:none

Compound Symbols:none

(7) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(8) BOUNDS(O(1), O(1))