(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

a__f(f(a)) → c(f(g(f(a))))
mark(f(X)) → a__f(mark(X))
mark(a) → a
mark(c(X)) → c(X)
mark(g(X)) → g(mark(X))
a__f(X) → f(X)

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

a__f(f(a)) → c(f(g(f(a))))
a__f(z0) → f(z0)
mark(f(z0)) → a__f(mark(z0))
mark(a) → a
mark(c(z0)) → c(z0)
mark(g(z0)) → g(mark(z0))
Tuples:

MARK(f(z0)) → c3(A__F(mark(z0)), MARK(z0))
MARK(g(z0)) → c6(MARK(z0))
S tuples:

MARK(f(z0)) → c3(A__F(mark(z0)), MARK(z0))
MARK(g(z0)) → c6(MARK(z0))
K tuples:none
Defined Rule Symbols:

a__f, mark

Defined Pair Symbols:

MARK

Compound Symbols:

c3, c6

(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

MARK(f(z0)) → c3(A__F(mark(z0)), MARK(z0))
We considered the (Usable) Rules:

mark(f(z0)) → a__f(mark(z0))
mark(a) → a
mark(c(z0)) → c(z0)
mark(g(z0)) → g(mark(z0))
a__f(f(a)) → c(f(g(f(a))))
a__f(z0) → f(z0)
And the Tuples:

MARK(f(z0)) → c3(A__F(mark(z0)), MARK(z0))
MARK(g(z0)) → c6(MARK(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(A__F(x1)) = [3]   
POL(MARK(x1)) = x12   
POL(a) = 0   
POL(a__f(x1)) = [3] + x1   
POL(c(x1)) = x1   
POL(c3(x1, x2)) = x1 + x2   
POL(c6(x1)) = x1   
POL(f(x1)) = [3] + x1   
POL(g(x1)) = x1   
POL(mark(x1)) = [2]x1   

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

a__f(f(a)) → c(f(g(f(a))))
a__f(z0) → f(z0)
mark(f(z0)) → a__f(mark(z0))
mark(a) → a
mark(c(z0)) → c(z0)
mark(g(z0)) → g(mark(z0))
Tuples:

MARK(f(z0)) → c3(A__F(mark(z0)), MARK(z0))
MARK(g(z0)) → c6(MARK(z0))
S tuples:

MARK(g(z0)) → c6(MARK(z0))
K tuples:

MARK(f(z0)) → c3(A__F(mark(z0)), MARK(z0))
Defined Rule Symbols:

a__f, mark

Defined Pair Symbols:

MARK

Compound Symbols:

c3, c6

(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

MARK(g(z0)) → c6(MARK(z0))
We considered the (Usable) Rules:

mark(f(z0)) → a__f(mark(z0))
mark(a) → a
mark(c(z0)) → c(z0)
mark(g(z0)) → g(mark(z0))
a__f(f(a)) → c(f(g(f(a))))
a__f(z0) → f(z0)
And the Tuples:

MARK(f(z0)) → c3(A__F(mark(z0)), MARK(z0))
MARK(g(z0)) → c6(MARK(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(A__F(x1)) = [5]   
POL(MARK(x1)) = [4]x1   
POL(a) = [2]   
POL(a__f(x1)) = [3] + [3]x1   
POL(c(x1)) = [2]   
POL(c3(x1, x2)) = x1 + x2   
POL(c6(x1)) = x1   
POL(f(x1)) = [4] + x1   
POL(g(x1)) = [3] + x1   
POL(mark(x1)) = [2]   

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

a__f(f(a)) → c(f(g(f(a))))
a__f(z0) → f(z0)
mark(f(z0)) → a__f(mark(z0))
mark(a) → a
mark(c(z0)) → c(z0)
mark(g(z0)) → g(mark(z0))
Tuples:

MARK(f(z0)) → c3(A__F(mark(z0)), MARK(z0))
MARK(g(z0)) → c6(MARK(z0))
S tuples:none
K tuples:

MARK(f(z0)) → c3(A__F(mark(z0)), MARK(z0))
MARK(g(z0)) → c6(MARK(z0))
Defined Rule Symbols:

a__f, mark

Defined Pair Symbols:

MARK

Compound Symbols:

c3, c6

(7) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(8) BOUNDS(O(1), O(1))