(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(X)) → f(active(X))
active(g(X)) → g(active(X))
f(mark(X)) → mark(f(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(c(X)) → c(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
c(ok(X)) → ok(c(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(f(a))) → c1(C(f(g(f(a)))), F(g(f(a))), G(f(a)), F(a))
ACTIVE(f(z0)) → c2(F(active(z0)), ACTIVE(z0))
ACTIVE(g(z0)) → c3(G(active(z0)), ACTIVE(z0))
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(f(z0)) → c8(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(f(a))) → c1(C(f(g(f(a)))), F(g(f(a))), G(f(a)), F(a))
ACTIVE(f(z0)) → c2(F(active(z0)), ACTIVE(z0))
ACTIVE(g(z0)) → c3(G(active(z0)), ACTIVE(z0))
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(f(z0)) → c8(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
ACTIVE, F, G, PROPER, C, TOP
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c10, c11, c12, c13, c14
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
ACTIVE(f(f(a))) → c1(C(f(g(f(a)))), F(g(f(a))), G(f(a)), F(a))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0)) → c2(F(active(z0)), ACTIVE(z0))
ACTIVE(g(z0)) → c3(G(active(z0)), ACTIVE(z0))
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(f(z0)) → c8(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(z0)) → c2(F(active(z0)), ACTIVE(z0))
ACTIVE(g(z0)) → c3(G(active(z0)), ACTIVE(z0))
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(f(z0)) → c8(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
ACTIVE, F, G, PROPER, C, TOP
Compound Symbols:
c2, c3, c4, c5, c6, c7, c8, c10, c11, c12, c13, c14
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
We considered the (Usable) Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
And the Tuples:
ACTIVE(f(z0)) → c2(F(active(z0)), ACTIVE(z0))
ACTIVE(g(z0)) → c3(G(active(z0)), ACTIVE(z0))
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(f(z0)) → c8(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(C(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [2]x1
POL(a) = [2]
POL(active(x1)) = x1
POL(c(x1)) = 0
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1)) = x1
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(f(x1)) = [2]x1
POL(g(x1)) = [4]x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
POL(proper(x1)) = x1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(z0)) → c2(F(active(z0)), ACTIVE(z0))
ACTIVE(g(z0)) → c3(G(active(z0)), ACTIVE(z0))
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(f(z0)) → c8(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(z0)) → c2(F(active(z0)), ACTIVE(z0))
ACTIVE(g(z0)) → c3(G(active(z0)), ACTIVE(z0))
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(f(z0)) → c8(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
K tuples:
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
ACTIVE, F, G, PROPER, C, TOP
Compound Symbols:
c2, c3, c4, c5, c6, c7, c8, c10, c11, c12, c13, c14
(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
f(
z0)) →
c2(
F(
active(
z0)),
ACTIVE(
z0)) by
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(f(x0)) → c2
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(g(z0)) → c3(G(active(z0)), ACTIVE(z0))
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(f(z0)) → c8(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(f(x0)) → c2
S tuples:
ACTIVE(g(z0)) → c3(G(active(z0)), ACTIVE(z0))
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(f(z0)) → c8(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(f(x0)) → c2
K tuples:
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
ACTIVE, F, G, PROPER, C, TOP
Compound Symbols:
c3, c4, c5, c6, c7, c8, c10, c11, c12, c13, c14, c2, c2
(9) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
ACTIVE(f(x0)) → c2
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(g(z0)) → c3(G(active(z0)), ACTIVE(z0))
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(f(z0)) → c8(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
S tuples:
ACTIVE(g(z0)) → c3(G(active(z0)), ACTIVE(z0))
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(f(z0)) → c8(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
K tuples:
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
ACTIVE, F, G, PROPER, C, TOP
Compound Symbols:
c3, c4, c5, c6, c7, c8, c10, c11, c12, c13, c14, c2
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
We considered the (Usable) Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
And the Tuples:
ACTIVE(g(z0)) → c3(G(active(z0)), ACTIVE(z0))
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(f(z0)) → c8(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = x1
POL(C(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [4]x1
POL(a) = [4]
POL(active(x1)) = 0
POL(c(x1)) = 0
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1)) = x1
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(f(x1)) = [2]x1
POL(g(x1)) = x1
POL(mark(x1)) = x1
POL(ok(x1)) = x1
POL(proper(x1)) = x1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(g(z0)) → c3(G(active(z0)), ACTIVE(z0))
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(f(z0)) → c8(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
S tuples:
ACTIVE(g(z0)) → c3(G(active(z0)), ACTIVE(z0))
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(f(z0)) → c8(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
K tuples:
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
ACTIVE, F, G, PROPER, C, TOP
Compound Symbols:
c3, c4, c5, c6, c7, c8, c10, c11, c12, c13, c14, c2
(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
g(
z0)) →
c3(
G(
active(
z0)),
ACTIVE(
z0)) by
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(x0)) → c3
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(f(z0)) → c8(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(x0)) → c3
S tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(f(z0)) → c8(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(x0)) → c3
K tuples:
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
F, G, PROPER, C, TOP, ACTIVE
Compound Symbols:
c4, c5, c6, c7, c8, c10, c11, c12, c13, c14, c2, c3, c3
(15) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
ACTIVE(g(x0)) → c3
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(f(z0)) → c8(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
S tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(f(z0)) → c8(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
K tuples:
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
F, G, PROPER, C, TOP, ACTIVE
Compound Symbols:
c4, c5, c6, c7, c8, c10, c11, c12, c13, c14, c2, c3
(17) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
We considered the (Usable) Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
And the Tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(f(z0)) → c8(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [4]x1
POL(C(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [4]x1
POL(a) = [4]
POL(active(x1)) = 0
POL(c(x1)) = 0
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1)) = x1
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(f(x1)) = [4]x1
POL(g(x1)) = [4]x1
POL(mark(x1)) = x1
POL(ok(x1)) = x1
POL(proper(x1)) = x1
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(f(z0)) → c8(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
S tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(f(z0)) → c8(F(proper(z0)), PROPER(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
K tuples:
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
F, G, PROPER, C, TOP, ACTIVE
Compound Symbols:
c4, c5, c6, c7, c8, c10, c11, c12, c13, c14, c2, c3
(19) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
f(
z0)) →
c8(
F(
proper(
z0)),
PROPER(
z0)) by
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c8(F(ok(a)), PROPER(a))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(x0)) → c8
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c8(F(ok(a)), PROPER(a))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(x0)) → c8
S tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c8(F(ok(a)), PROPER(a))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(x0)) → c8
K tuples:
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
F, G, PROPER, C, TOP, ACTIVE
Compound Symbols:
c4, c5, c6, c7, c10, c11, c12, c13, c14, c2, c3, c8, c8
(21) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
PROPER(f(x0)) → c8
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c8(F(ok(a)), PROPER(a))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
S tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c8(F(ok(a)), PROPER(a))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
K tuples:
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
F, G, PROPER, C, TOP, ACTIVE
Compound Symbols:
c4, c5, c6, c7, c10, c11, c12, c13, c14, c2, c3, c8
(23) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c8(F(ok(a)))
S tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c8(F(ok(a)))
K tuples:
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
F, G, PROPER, C, TOP, ACTIVE
Compound Symbols:
c4, c5, c6, c7, c10, c11, c12, c13, c14, c2, c3, c8, c8
(25) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PROPER(f(a)) → c8(F(ok(a)))
We considered the (Usable) Rules:
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
c(ok(z0)) → ok(c(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
And the Tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c8(F(ok(a)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(C(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(PROPER(x1)) = [1]
POL(TOP(x1)) = [2]x1
POL(a) = [1]
POL(active(x1)) = x1
POL(c(x1)) = 0
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1)) = x1
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(f(x1)) = [2]x1
POL(g(x1)) = [4]x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
POL(proper(x1)) = x1
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c8(F(ok(a)))
S tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(c(z0)) → c10(C(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
K tuples:
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c8(F(ok(a)))
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
F, G, PROPER, C, TOP, ACTIVE
Compound Symbols:
c4, c5, c6, c7, c10, c11, c12, c13, c14, c2, c3, c8, c8
(27) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
c(
z0)) →
c10(
C(
proper(
z0)),
PROPER(
z0)) by
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(a)) → c10(C(ok(a)), PROPER(a))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
PROPER(c(x0)) → c10
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c8(F(ok(a)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(a)) → c10(C(ok(a)), PROPER(a))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
PROPER(c(x0)) → c10
S tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(a)) → c10(C(ok(a)), PROPER(a))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
PROPER(c(x0)) → c10
K tuples:
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c8(F(ok(a)))
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
F, G, PROPER, C, TOP, ACTIVE
Compound Symbols:
c4, c5, c6, c7, c11, c12, c13, c14, c2, c3, c8, c8, c10, c10
(29) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
PROPER(c(x0)) → c10
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c8(F(ok(a)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(a)) → c10(C(ok(a)), PROPER(a))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
S tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(a)) → c10(C(ok(a)), PROPER(a))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
K tuples:
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c8(F(ok(a)))
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
F, G, PROPER, C, TOP, ACTIVE
Compound Symbols:
c4, c5, c6, c7, c11, c12, c13, c14, c2, c3, c8, c8, c10
(31) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c8(F(ok(a)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
PROPER(c(a)) → c10(C(ok(a)))
S tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
PROPER(c(a)) → c10(C(ok(a)))
K tuples:
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c8(F(ok(a)))
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
F, G, PROPER, C, TOP, ACTIVE
Compound Symbols:
c4, c5, c6, c7, c11, c12, c13, c14, c2, c3, c8, c8, c10, c10
(33) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PROPER(c(a)) → c10(C(ok(a)))
We considered the (Usable) Rules:
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
c(ok(z0)) → ok(c(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
And the Tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c8(F(ok(a)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
PROPER(c(a)) → c10(C(ok(a)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(C(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(PROPER(x1)) = [1]
POL(TOP(x1)) = [4]x1
POL(a) = [4]
POL(active(x1)) = x1
POL(c(x1)) = 0
POL(c10(x1)) = x1
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1)) = x1
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(f(x1)) = [4]x1
POL(g(x1)) = [4]x1
POL(mark(x1)) = [2] + x1
POL(ok(x1)) = x1
POL(proper(x1)) = x1
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c8(F(ok(a)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
PROPER(c(a)) → c10(C(ok(a)))
S tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
PROPER(g(z0)) → c11(G(proper(z0)), PROPER(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
K tuples:
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c8(F(ok(a)))
PROPER(c(a)) → c10(C(ok(a)))
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
F, G, PROPER, C, TOP, ACTIVE
Compound Symbols:
c4, c5, c6, c7, c11, c12, c13, c14, c2, c3, c8, c8, c10, c10
(35) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
g(
z0)) →
c11(
G(
proper(
z0)),
PROPER(
z0)) by
PROPER(g(f(z0))) → c11(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c11(G(ok(a)), PROPER(a))
PROPER(g(c(z0))) → c11(G(c(proper(z0))), PROPER(c(z0)))
PROPER(g(g(z0))) → c11(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(x0)) → c11
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c8(F(ok(a)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
PROPER(c(a)) → c10(C(ok(a)))
PROPER(g(f(z0))) → c11(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c11(G(ok(a)), PROPER(a))
PROPER(g(c(z0))) → c11(G(c(proper(z0))), PROPER(c(z0)))
PROPER(g(g(z0))) → c11(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(x0)) → c11
S tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c11(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c11(G(ok(a)), PROPER(a))
PROPER(g(c(z0))) → c11(G(c(proper(z0))), PROPER(c(z0)))
PROPER(g(g(z0))) → c11(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(x0)) → c11
K tuples:
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c8(F(ok(a)))
PROPER(c(a)) → c10(C(ok(a)))
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
F, G, C, TOP, ACTIVE, PROPER
Compound Symbols:
c4, c5, c6, c7, c12, c13, c14, c2, c3, c8, c8, c10, c10, c11, c11
(37) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
PROPER(g(x0)) → c11
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c8(F(ok(a)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
PROPER(c(a)) → c10(C(ok(a)))
PROPER(g(f(z0))) → c11(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c11(G(ok(a)), PROPER(a))
PROPER(g(c(z0))) → c11(G(c(proper(z0))), PROPER(c(z0)))
PROPER(g(g(z0))) → c11(G(g(proper(z0))), PROPER(g(z0)))
S tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c11(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c11(G(ok(a)), PROPER(a))
PROPER(g(c(z0))) → c11(G(c(proper(z0))), PROPER(c(z0)))
PROPER(g(g(z0))) → c11(G(g(proper(z0))), PROPER(g(z0)))
K tuples:
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c8(F(ok(a)))
PROPER(c(a)) → c10(C(ok(a)))
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
F, G, C, TOP, ACTIVE, PROPER
Compound Symbols:
c4, c5, c6, c7, c12, c13, c14, c2, c3, c8, c8, c10, c10, c11
(39) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c8(F(ok(a)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
PROPER(c(a)) → c10(C(ok(a)))
PROPER(g(f(z0))) → c11(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(c(z0))) → c11(G(c(proper(z0))), PROPER(c(z0)))
PROPER(g(g(z0))) → c11(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c11(G(ok(a)))
S tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c11(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(c(z0))) → c11(G(c(proper(z0))), PROPER(c(z0)))
PROPER(g(g(z0))) → c11(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c11(G(ok(a)))
K tuples:
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c8(F(ok(a)))
PROPER(c(a)) → c10(C(ok(a)))
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
F, G, C, TOP, ACTIVE, PROPER
Compound Symbols:
c4, c5, c6, c7, c12, c13, c14, c2, c3, c8, c8, c10, c10, c11, c11
(41) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PROPER(g(a)) → c11(G(ok(a)))
We considered the (Usable) Rules:
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
c(ok(z0)) → ok(c(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
And the Tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c8(F(ok(a)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
PROPER(c(a)) → c10(C(ok(a)))
PROPER(g(f(z0))) → c11(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(c(z0))) → c11(G(c(proper(z0))), PROPER(c(z0)))
PROPER(g(g(z0))) → c11(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c11(G(ok(a)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(C(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(PROPER(x1)) = [4]
POL(TOP(x1)) = x1
POL(a) = [1]
POL(active(x1)) = x1
POL(c(x1)) = 0
POL(c10(x1)) = x1
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c12(x1)) = x1
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1)) = x1
POL(c5(x1)) = x1
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(f(x1)) = [2]x1
POL(g(x1)) = [2]x1
POL(mark(x1)) = [4] + x1
POL(ok(x1)) = x1
POL(proper(x1)) = x1
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
C(ok(z0)) → c12(C(z0))
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c8(F(ok(a)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
PROPER(c(a)) → c10(C(ok(a)))
PROPER(g(f(z0))) → c11(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(c(z0))) → c11(G(c(proper(z0))), PROPER(c(z0)))
PROPER(g(g(z0))) → c11(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c11(G(ok(a)))
S tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c11(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(c(z0))) → c11(G(c(proper(z0))), PROPER(c(z0)))
PROPER(g(g(z0))) → c11(G(g(proper(z0))), PROPER(g(z0)))
K tuples:
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c8(F(ok(a)))
PROPER(c(a)) → c10(C(ok(a)))
PROPER(g(a)) → c11(G(ok(a)))
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
F, G, C, TOP, ACTIVE, PROPER
Compound Symbols:
c4, c5, c6, c7, c12, c13, c14, c2, c3, c8, c8, c10, c10, c11, c11
(43) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
mark(
z0)) →
c13(
TOP(
proper(
z0)),
PROPER(
z0)) by
TOP(mark(f(z0))) → c13(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(a)) → c13(TOP(ok(a)), PROPER(a))
TOP(mark(c(z0))) → c13(TOP(c(proper(z0))), PROPER(c(z0)))
TOP(mark(g(z0))) → c13(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(x0)) → c13
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c8(F(ok(a)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
PROPER(c(a)) → c10(C(ok(a)))
PROPER(g(f(z0))) → c11(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(c(z0))) → c11(G(c(proper(z0))), PROPER(c(z0)))
PROPER(g(g(z0))) → c11(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c11(G(ok(a)))
TOP(mark(f(z0))) → c13(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(a)) → c13(TOP(ok(a)), PROPER(a))
TOP(mark(c(z0))) → c13(TOP(c(proper(z0))), PROPER(c(z0)))
TOP(mark(g(z0))) → c13(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(x0)) → c13
S tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c11(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(c(z0))) → c11(G(c(proper(z0))), PROPER(c(z0)))
PROPER(g(g(z0))) → c11(G(g(proper(z0))), PROPER(g(z0)))
K tuples:
TOP(mark(z0)) → c13(TOP(proper(z0)), PROPER(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c8(F(ok(a)))
PROPER(c(a)) → c10(C(ok(a)))
PROPER(g(a)) → c11(G(ok(a)))
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
F, G, C, TOP, ACTIVE, PROPER
Compound Symbols:
c4, c5, c6, c7, c12, c14, c2, c3, c8, c8, c10, c10, c11, c11, c13, c13
(45) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
TOP(mark(x0)) → c13
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c8(F(ok(a)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
PROPER(c(a)) → c10(C(ok(a)))
PROPER(g(f(z0))) → c11(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(c(z0))) → c11(G(c(proper(z0))), PROPER(c(z0)))
PROPER(g(g(z0))) → c11(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c11(G(ok(a)))
TOP(mark(f(z0))) → c13(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(a)) → c13(TOP(ok(a)), PROPER(a))
TOP(mark(c(z0))) → c13(TOP(c(proper(z0))), PROPER(c(z0)))
TOP(mark(g(z0))) → c13(TOP(g(proper(z0))), PROPER(g(z0)))
S tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c11(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(c(z0))) → c11(G(c(proper(z0))), PROPER(c(z0)))
PROPER(g(g(z0))) → c11(G(g(proper(z0))), PROPER(g(z0)))
K tuples:
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c8(F(ok(a)))
PROPER(c(a)) → c10(C(ok(a)))
PROPER(g(a)) → c11(G(ok(a)))
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
F, G, C, TOP, ACTIVE, PROPER
Compound Symbols:
c4, c5, c6, c7, c12, c14, c2, c3, c8, c8, c10, c10, c11, c11, c13
(47) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(48) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(c(f(g(f(a)))))
active(f(z0)) → f(active(z0))
active(g(z0)) → g(active(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(c(z0)) → c(proper(z0))
proper(g(z0)) → g(proper(z0))
c(ok(z0)) → ok(c(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(a)) → c8(F(ok(a)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
PROPER(c(a)) → c10(C(ok(a)))
PROPER(g(f(z0))) → c11(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(c(z0))) → c11(G(c(proper(z0))), PROPER(c(z0)))
PROPER(g(g(z0))) → c11(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(a)) → c11(G(ok(a)))
TOP(mark(f(z0))) → c13(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(c(z0))) → c13(TOP(c(proper(z0))), PROPER(c(z0)))
TOP(mark(g(z0))) → c13(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(a)) → c13(TOP(ok(a)))
S tuples:
F(mark(z0)) → c4(F(z0))
F(ok(z0)) → c5(F(z0))
G(mark(z0)) → c6(G(z0))
G(ok(z0)) → c7(G(z0))
C(ok(z0)) → c12(C(z0))
TOP(ok(z0)) → c14(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c2(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(g(z0))) → c2(F(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(z0))) → c3(G(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(g(g(z0))) → c3(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c8(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(c(z0))) → c8(F(c(proper(z0))), PROPER(c(z0)))
PROPER(f(g(z0))) → c8(F(g(proper(z0))), PROPER(g(z0)))
PROPER(c(f(z0))) → c10(C(f(proper(z0))), PROPER(f(z0)))
PROPER(c(c(z0))) → c10(C(c(proper(z0))), PROPER(c(z0)))
PROPER(c(g(z0))) → c10(C(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c11(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(c(z0))) → c11(G(c(proper(z0))), PROPER(c(z0)))
PROPER(g(g(z0))) → c11(G(g(proper(z0))), PROPER(g(z0)))
K tuples:
ACTIVE(f(f(f(a)))) → c2(F(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
ACTIVE(g(f(f(a)))) → c3(G(mark(c(f(g(f(a)))))), ACTIVE(f(f(a))))
PROPER(f(a)) → c8(F(ok(a)))
PROPER(c(a)) → c10(C(ok(a)))
PROPER(g(a)) → c11(G(ok(a)))
Defined Rule Symbols:
active, f, g, proper, c, top
Defined Pair Symbols:
F, G, C, TOP, ACTIVE, PROPER
Compound Symbols:
c4, c5, c6, c7, c12, c14, c2, c3, c8, c8, c10, c10, c11, c11, c13, c13
(49) CpxTrsMatchBoundsProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 2.
The certificate found is represented by the following graph.
Start state: 3095
Accept states: [3096, 3097, 3098, 3099, 3100, 3101]
Transitions:
3095→3096[active_1|0]
3095→3097[f_1|0]
3095→3098[g_1|0]
3095→3099[proper_1|0]
3095→3100[c_1|0]
3095→3101[top_1|0]
3095→3095[a|0, mark_1|0, ok_1|0]
3095→3102[a|1]
3095→3103[f_1|1]
3095→3104[g_1|1]
3095→3105[proper_1|1]
3095→3106[f_1|1]
3095→3107[g_1|1]
3095→3108[c_1|1]
3095→3109[active_1|1]
3102→3099[ok_1|1]
3102→3105[ok_1|1]
3102→3110[active_1|2]
3103→3097[mark_1|1]
3103→3103[mark_1|1]
3103→3106[mark_1|1]
3104→3098[mark_1|1]
3104→3104[mark_1|1]
3104→3107[mark_1|1]
3105→3101[top_1|1]
3106→3097[ok_1|1]
3106→3103[ok_1|1]
3106→3106[ok_1|1]
3107→3098[ok_1|1]
3107→3104[ok_1|1]
3107→3107[ok_1|1]
3108→3100[ok_1|1]
3108→3108[ok_1|1]
3109→3101[top_1|1]
3110→3101[top_1|2]
(50) BOUNDS(O(1), O(n^1))