We consider the following Problem:
Strict Trs:
{ a__g(X) -> a__h(X)
, a__c() -> d()
, a__h(d()) -> a__g(c())
, mark(g(X)) -> a__g(X)
, mark(h(X)) -> a__h(X)
, mark(c()) -> a__c()
, mark(d()) -> d()
, a__g(X) -> g(X)
, a__h(X) -> h(X)
, a__c() -> c()}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
We consider the following Problem:
Strict Trs:
{ a__g(X) -> a__h(X)
, a__c() -> d()
, a__h(d()) -> a__g(c())
, mark(g(X)) -> a__g(X)
, mark(h(X)) -> a__h(X)
, mark(c()) -> a__c()
, mark(d()) -> d()
, a__g(X) -> g(X)
, a__h(X) -> h(X)
, a__c() -> c()}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component:
{ a__c() -> d()
, mark(d()) -> d()
, a__g(X) -> g(X)
, a__h(X) -> h(X)
, a__c() -> c()}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(a__g) = {}, Uargs(a__h) = {}, Uargs(mark) = {},
Uargs(g) = {}, Uargs(h) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
a__g(x1) = [0 0] x1 + [1]
[0 0] [1]
a__h(x1) = [0 0] x1 + [1]
[0 0] [1]
a__c() = [2]
[0]
d() = [0]
[0]
c() = [0]
[0]
mark(x1) = [0 0] x1 + [1]
[0 0] [1]
g(x1) = [0 0] x1 + [0]
[0 0] [0]
h(x1) = [0 0] x1 + [0]
[0 0] [0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ a__g(X) -> a__h(X)
, a__h(d()) -> a__g(c())
, mark(g(X)) -> a__g(X)
, mark(h(X)) -> a__h(X)
, mark(c()) -> a__c()}
Weak Trs:
{ a__c() -> d()
, mark(d()) -> d()
, a__g(X) -> g(X)
, a__h(X) -> h(X)
, a__c() -> c()}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {mark(c()) -> a__c()}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(a__g) = {}, Uargs(a__h) = {}, Uargs(mark) = {},
Uargs(g) = {}, Uargs(h) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
a__g(x1) = [0 0] x1 + [1]
[0 0] [1]
a__h(x1) = [0 0] x1 + [1]
[0 0] [1]
a__c() = [0]
[0]
d() = [0]
[0]
c() = [0]
[0]
mark(x1) = [0 0] x1 + [1]
[0 0] [1]
g(x1) = [0 0] x1 + [0]
[0 0] [0]
h(x1) = [0 0] x1 + [0]
[0 0] [0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ a__g(X) -> a__h(X)
, a__h(d()) -> a__g(c())
, mark(g(X)) -> a__g(X)
, mark(h(X)) -> a__h(X)}
Weak Trs:
{ mark(c()) -> a__c()
, a__c() -> d()
, mark(d()) -> d()
, a__g(X) -> g(X)
, a__h(X) -> h(X)
, a__c() -> c()}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component:
{ mark(g(X)) -> a__g(X)
, mark(h(X)) -> a__h(X)}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(a__g) = {}, Uargs(a__h) = {}, Uargs(mark) = {},
Uargs(g) = {}, Uargs(h) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
a__g(x1) = [0 0] x1 + [1]
[0 0] [1]
a__h(x1) = [0 0] x1 + [1]
[0 0] [0]
a__c() = [0]
[0]
d() = [0]
[0]
c() = [0]
[0]
mark(x1) = [0 0] x1 + [3]
[0 0] [1]
g(x1) = [0 0] x1 + [0]
[0 0] [0]
h(x1) = [0 0] x1 + [0]
[0 0] [0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ a__g(X) -> a__h(X)
, a__h(d()) -> a__g(c())}
Weak Trs:
{ mark(g(X)) -> a__g(X)
, mark(h(X)) -> a__h(X)
, mark(c()) -> a__c()
, a__c() -> d()
, mark(d()) -> d()
, a__g(X) -> g(X)
, a__h(X) -> h(X)
, a__c() -> c()}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {a__g(X) -> a__h(X)}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(a__g) = {}, Uargs(a__h) = {}, Uargs(mark) = {},
Uargs(g) = {}, Uargs(h) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
a__g(x1) = [0 0] x1 + [3]
[0 0] [1]
a__h(x1) = [0 0] x1 + [1]
[0 0] [1]
a__c() = [0]
[0]
d() = [0]
[0]
c() = [0]
[0]
mark(x1) = [0 0] x1 + [3]
[0 0] [1]
g(x1) = [0 0] x1 + [0]
[0 0] [0]
h(x1) = [0 0] x1 + [0]
[0 0] [0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs: {a__h(d()) -> a__g(c())}
Weak Trs:
{ a__g(X) -> a__h(X)
, mark(g(X)) -> a__g(X)
, mark(h(X)) -> a__h(X)
, mark(c()) -> a__c()
, a__c() -> d()
, mark(d()) -> d()
, a__g(X) -> g(X)
, a__h(X) -> h(X)
, a__c() -> c()}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {a__h(d()) -> a__g(c())}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(a__g) = {}, Uargs(a__h) = {}, Uargs(mark) = {},
Uargs(g) = {}, Uargs(h) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
a__g(x1) = [0 2] x1 + [1]
[0 0] [1]
a__h(x1) = [0 1] x1 + [0]
[0 0] [1]
a__c() = [0]
[2]
d() = [0]
[2]
c() = [0]
[0]
mark(x1) = [1 0] x1 + [1]
[0 0] [3]
g(x1) = [0 2] x1 + [0]
[0 0] [0]
h(x1) = [0 1] x1 + [0]
[0 0] [0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Weak Trs:
{ a__h(d()) -> a__g(c())
, a__g(X) -> a__h(X)
, mark(g(X)) -> a__g(X)
, mark(h(X)) -> a__h(X)
, mark(c()) -> a__c()
, a__c() -> d()
, mark(d()) -> d()
, a__g(X) -> g(X)
, a__h(X) -> h(X)
, a__c() -> c()}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(O(1),O(1))
Proof:
We consider the following Problem:
Weak Trs:
{ a__h(d()) -> a__g(c())
, a__g(X) -> a__h(X)
, mark(g(X)) -> a__g(X)
, mark(h(X)) -> a__h(X)
, mark(c()) -> a__c()
, a__c() -> d()
, mark(d()) -> d()
, a__g(X) -> g(X)
, a__h(X) -> h(X)
, a__c() -> c()}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(O(1),O(1))
Proof:
Empty rules are trivially bounded
Hurray, we answered YES(?,O(n^1))