We consider the following Problem: Strict Trs: { a__g(X) -> a__h(X) , a__c() -> d() , a__h(d()) -> a__g(c()) , mark(g(X)) -> a__g(X) , mark(h(X)) -> a__h(X) , mark(c()) -> a__c() , mark(d()) -> d() , a__g(X) -> g(X) , a__h(X) -> h(X) , a__c() -> c()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { a__g(X) -> a__h(X) , a__c() -> d() , a__h(d()) -> a__g(c()) , mark(g(X)) -> a__g(X) , mark(h(X)) -> a__h(X) , mark(c()) -> a__c() , mark(d()) -> d() , a__g(X) -> g(X) , a__h(X) -> h(X) , a__c() -> c()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { a__c() -> d() , mark(d()) -> d() , a__g(X) -> g(X) , a__h(X) -> h(X) , a__c() -> c()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(a__g) = {}, Uargs(a__h) = {}, Uargs(mark) = {}, Uargs(g) = {}, Uargs(h) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: a__g(x1) = [0 0] x1 + [1] [0 0] [1] a__h(x1) = [0 0] x1 + [1] [0 0] [1] a__c() = [2] [0] d() = [0] [0] c() = [0] [0] mark(x1) = [0 0] x1 + [1] [0 0] [1] g(x1) = [0 0] x1 + [0] [0 0] [0] h(x1) = [0 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { a__g(X) -> a__h(X) , a__h(d()) -> a__g(c()) , mark(g(X)) -> a__g(X) , mark(h(X)) -> a__h(X) , mark(c()) -> a__c()} Weak Trs: { a__c() -> d() , mark(d()) -> d() , a__g(X) -> g(X) , a__h(X) -> h(X) , a__c() -> c()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {mark(c()) -> a__c()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(a__g) = {}, Uargs(a__h) = {}, Uargs(mark) = {}, Uargs(g) = {}, Uargs(h) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: a__g(x1) = [0 0] x1 + [1] [0 0] [1] a__h(x1) = [0 0] x1 + [1] [0 0] [1] a__c() = [0] [0] d() = [0] [0] c() = [0] [0] mark(x1) = [0 0] x1 + [1] [0 0] [1] g(x1) = [0 0] x1 + [0] [0 0] [0] h(x1) = [0 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { a__g(X) -> a__h(X) , a__h(d()) -> a__g(c()) , mark(g(X)) -> a__g(X) , mark(h(X)) -> a__h(X)} Weak Trs: { mark(c()) -> a__c() , a__c() -> d() , mark(d()) -> d() , a__g(X) -> g(X) , a__h(X) -> h(X) , a__c() -> c()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { mark(g(X)) -> a__g(X) , mark(h(X)) -> a__h(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(a__g) = {}, Uargs(a__h) = {}, Uargs(mark) = {}, Uargs(g) = {}, Uargs(h) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: a__g(x1) = [0 0] x1 + [1] [0 0] [1] a__h(x1) = [0 0] x1 + [1] [0 0] [0] a__c() = [0] [0] d() = [0] [0] c() = [0] [0] mark(x1) = [0 0] x1 + [3] [0 0] [1] g(x1) = [0 0] x1 + [0] [0 0] [0] h(x1) = [0 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { a__g(X) -> a__h(X) , a__h(d()) -> a__g(c())} Weak Trs: { mark(g(X)) -> a__g(X) , mark(h(X)) -> a__h(X) , mark(c()) -> a__c() , a__c() -> d() , mark(d()) -> d() , a__g(X) -> g(X) , a__h(X) -> h(X) , a__c() -> c()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {a__g(X) -> a__h(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(a__g) = {}, Uargs(a__h) = {}, Uargs(mark) = {}, Uargs(g) = {}, Uargs(h) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: a__g(x1) = [0 0] x1 + [3] [0 0] [1] a__h(x1) = [0 0] x1 + [1] [0 0] [1] a__c() = [0] [0] d() = [0] [0] c() = [0] [0] mark(x1) = [0 0] x1 + [3] [0 0] [1] g(x1) = [0 0] x1 + [0] [0 0] [0] h(x1) = [0 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {a__h(d()) -> a__g(c())} Weak Trs: { a__g(X) -> a__h(X) , mark(g(X)) -> a__g(X) , mark(h(X)) -> a__h(X) , mark(c()) -> a__c() , a__c() -> d() , mark(d()) -> d() , a__g(X) -> g(X) , a__h(X) -> h(X) , a__c() -> c()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {a__h(d()) -> a__g(c())} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(a__g) = {}, Uargs(a__h) = {}, Uargs(mark) = {}, Uargs(g) = {}, Uargs(h) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: a__g(x1) = [0 2] x1 + [1] [0 0] [1] a__h(x1) = [0 1] x1 + [0] [0 0] [1] a__c() = [0] [2] d() = [0] [2] c() = [0] [0] mark(x1) = [1 0] x1 + [1] [0 0] [3] g(x1) = [0 2] x1 + [0] [0 0] [0] h(x1) = [0 1] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Weak Trs: { a__h(d()) -> a__g(c()) , a__g(X) -> a__h(X) , mark(g(X)) -> a__g(X) , mark(h(X)) -> a__h(X) , mark(c()) -> a__c() , a__c() -> d() , mark(d()) -> d() , a__g(X) -> g(X) , a__h(X) -> h(X) , a__c() -> c()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { a__h(d()) -> a__g(c()) , a__g(X) -> a__h(X) , mark(g(X)) -> a__g(X) , mark(h(X)) -> a__h(X) , mark(c()) -> a__c() , a__c() -> d() , mark(d()) -> d() , a__g(X) -> g(X) , a__h(X) -> h(X) , a__c() -> c()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))