We consider the following Problem:

  Strict Trs:
    {  g(X) -> h(activate(X))
     , c() -> d()
     , h(n__d()) -> g(n__c())
     , d() -> n__d()
     , c() -> n__c()
     , activate(n__d()) -> d()
     , activate(n__c()) -> c()
     , activate(X) -> X}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  We consider the following Problem:
  
    Strict Trs:
      {  g(X) -> h(activate(X))
       , c() -> d()
       , h(n__d()) -> g(n__c())
       , d() -> n__d()
       , c() -> n__c()
       , activate(n__d()) -> d()
       , activate(n__c()) -> c()
       , activate(X) -> X}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component:
      {  c() -> d()
       , c() -> n__c()}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(g) = {}, Uargs(h) = {1}, Uargs(activate) = {}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       g(x1) = [1 0] x1 + [1]
               [1 0]      [1]
       h(x1) = [1 0] x1 + [1]
               [1 0]      [1]
       activate(x1) = [1 0] x1 + [0]
                      [0 0]      [1]
       c() = [2]
             [0]
       d() = [0]
             [0]
       n__d() = [0]
                [0]
       n__c() = [0]
                [0]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  g(X) -> h(activate(X))
         , h(n__d()) -> g(n__c())
         , d() -> n__d()
         , activate(n__d()) -> d()
         , activate(n__c()) -> c()
         , activate(X) -> X}
      Weak Trs:
        {  c() -> d()
         , c() -> n__c()}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component: {d() -> n__d()}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(g) = {}, Uargs(h) = {1}, Uargs(activate) = {}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         g(x1) = [1 0] x1 + [1]
                 [1 0]      [1]
         h(x1) = [1 0] x1 + [1]
                 [1 0]      [1]
         activate(x1) = [1 0] x1 + [0]
                        [0 0]      [1]
         c() = [2]
               [0]
         d() = [2]
               [0]
         n__d() = [0]
                  [0]
         n__c() = [0]
                  [0]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  g(X) -> h(activate(X))
           , h(n__d()) -> g(n__c())
           , activate(n__d()) -> d()
           , activate(n__c()) -> c()
           , activate(X) -> X}
        Weak Trs:
          {  d() -> n__d()
           , c() -> d()
           , c() -> n__c()}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component: {g(X) -> h(activate(X))}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(g) = {}, Uargs(h) = {1}, Uargs(activate) = {}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           g(x1) = [1 0] x1 + [3]
                   [1 0]      [1]
           h(x1) = [1 0] x1 + [1]
                   [1 0]      [1]
           activate(x1) = [1 0] x1 + [0]
                          [0 0]      [1]
           c() = [0]
                 [0]
           d() = [0]
                 [0]
           n__d() = [0]
                    [0]
           n__c() = [0]
                    [0]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  h(n__d()) -> g(n__c())
             , activate(n__d()) -> d()
             , activate(n__c()) -> c()
             , activate(X) -> X}
          Weak Trs:
            {  g(X) -> h(activate(X))
             , d() -> n__d()
             , c() -> d()
             , c() -> n__c()}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component: {h(n__d()) -> g(n__c())}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            The following argument positions are usable:
              Uargs(g) = {}, Uargs(h) = {1}, Uargs(activate) = {}
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             g(x1) = [1 0] x1 + [0]
                     [0 0]      [1]
             h(x1) = [1 0] x1 + [0]
                     [0 0]      [1]
             activate(x1) = [1 0] x1 + [0]
                            [0 0]      [1]
             c() = [1]
                   [0]
             d() = [1]
                   [0]
             n__d() = [1]
                      [0]
             n__c() = [0]
                      [0]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Strict Trs:
              {  activate(n__d()) -> d()
               , activate(n__c()) -> c()
               , activate(X) -> X}
            Weak Trs:
              {  h(n__d()) -> g(n__c())
               , g(X) -> h(activate(X))
               , d() -> n__d()
               , c() -> d()
               , c() -> n__c()}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            The weightgap principle applies, where following rules are oriented strictly:
            
            TRS Component:
              {  activate(n__d()) -> d()
               , activate(X) -> X}
            
            Interpretation of nonconstant growth:
            -------------------------------------
              The following argument positions are usable:
                Uargs(g) = {}, Uargs(h) = {1}, Uargs(activate) = {}
              We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
              Interpretation Functions:
               g(x1) = [1 2] x1 + [1]
                       [0 0]      [1]
               h(x1) = [1 2] x1 + [0]
                       [0 0]      [1]
               activate(x1) = [1 0] x1 + [1]
                              [0 1]      [0]
               c() = [1]
                     [2]
               d() = [1]
                     [2]
               n__d() = [1]
                        [2]
               n__c() = [0]
                        [0]
            
            The strictly oriented rules are moved into the weak component.
            
            We consider the following Problem:
            
              Strict Trs: {activate(n__c()) -> c()}
              Weak Trs:
                {  activate(n__d()) -> d()
                 , activate(X) -> X
                 , h(n__d()) -> g(n__c())
                 , g(X) -> h(activate(X))
                 , d() -> n__d()
                 , c() -> d()
                 , c() -> n__c()}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(?,O(n^1))
            
            Proof:
              We consider the following Problem:
              
                Strict Trs: {activate(n__c()) -> c()}
                Weak Trs:
                  {  activate(n__d()) -> d()
                   , activate(X) -> X
                   , h(n__d()) -> g(n__c())
                   , g(X) -> h(activate(X))
                   , d() -> n__d()
                   , c() -> d()
                   , c() -> n__c()}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(?,O(n^1))
              
              Proof:
                We have computed the following dependency pairs
                
                  Strict DPs: {activate^#(n__c()) -> c^#()}
                  Weak DPs:
                    {  activate^#(n__d()) -> d^#()
                     , activate^#(X) -> c_3()
                     , h^#(n__d()) -> g^#(n__c())
                     , g^#(X) -> h^#(activate(X))
                     , d^#() -> c_6()
                     , c^#() -> d^#()
                     , c^#() -> c_8()}
                
                We consider the following Problem:
                
                  Strict DPs: {activate^#(n__c()) -> c^#()}
                  Strict Trs: {activate(n__c()) -> c()}
                  Weak DPs:
                    {  activate^#(n__d()) -> d^#()
                     , activate^#(X) -> c_3()
                     , h^#(n__d()) -> g^#(n__c())
                     , g^#(X) -> h^#(activate(X))
                     , d^#() -> c_6()
                     , c^#() -> d^#()
                     , c^#() -> c_8()}
                  Weak Trs:
                    {  activate(n__d()) -> d()
                     , activate(X) -> X
                     , h(n__d()) -> g(n__c())
                     , g(X) -> h(activate(X))
                     , d() -> n__d()
                     , c() -> d()
                     , c() -> n__c()}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(?,O(n^1))
                
                Proof:
                  We replace strict/weak-rules by the corresponding usable rules:
                  
                    Strict Usable Rules: {activate(n__c()) -> c()}
                    Weak Usable Rules:
                      {  activate(n__d()) -> d()
                       , activate(X) -> X
                       , d() -> n__d()
                       , c() -> d()
                       , c() -> n__c()}
                  
                  We consider the following Problem:
                  
                    Strict DPs: {activate^#(n__c()) -> c^#()}
                    Strict Trs: {activate(n__c()) -> c()}
                    Weak DPs:
                      {  activate^#(n__d()) -> d^#()
                       , activate^#(X) -> c_3()
                       , h^#(n__d()) -> g^#(n__c())
                       , g^#(X) -> h^#(activate(X))
                       , d^#() -> c_6()
                       , c^#() -> d^#()
                       , c^#() -> c_8()}
                    Weak Trs:
                      {  activate(n__d()) -> d()
                       , activate(X) -> X
                       , d() -> n__d()
                       , c() -> d()
                       , c() -> n__c()}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(?,O(n^1))
                  
                  Proof:
                    We consider the following Problem:
                    
                      Strict DPs: {activate^#(n__c()) -> c^#()}
                      Strict Trs: {activate(n__c()) -> c()}
                      Weak DPs:
                        {  activate^#(n__d()) -> d^#()
                         , activate^#(X) -> c_3()
                         , h^#(n__d()) -> g^#(n__c())
                         , g^#(X) -> h^#(activate(X))
                         , d^#() -> c_6()
                         , c^#() -> d^#()
                         , c^#() -> c_8()}
                      Weak Trs:
                        {  activate(n__d()) -> d()
                         , activate(X) -> X
                         , d() -> n__d()
                         , c() -> d()
                         , c() -> n__c()}
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(?,O(n^1))
                    
                    Proof:
                      We use following congruence DG for path analysis
                      
                      ->4:{1}                                                     [   YES(?,O(n^1))    ]
                         |
                         |->6:{7}                                                 [      subsumed      ]
                         |   |
                         |   `->7:{6}                                             [   YES(O(1),O(1))   ]
                         |
                         `->5:{8}                                                 [   YES(O(1),O(1))   ]
                      
                      ->3:{2}                                                     [      subsumed      ]
                         |
                         `->7:{6}                                                 [   YES(O(1),O(1))   ]
                      
                      ->2:{3}                                                     [   YES(O(1),O(1))   ]
                      
                      ->1:{4,5}                                                   [   YES(O(1),O(1))   ]
                      
                      
                      Here dependency-pairs are as follows:
                      
                      Strict DPs:
                        {1: activate^#(n__c()) -> c^#()}
                      WeakDPs DPs:
                        {  2: activate^#(n__d()) -> d^#()
                         , 3: activate^#(X) -> c_3()
                         , 4: h^#(n__d()) -> g^#(n__c())
                         , 5: g^#(X) -> h^#(activate(X))
                         , 6: d^#() -> c_6()
                         , 7: c^#() -> d^#()
                         , 8: c^#() -> c_8()}
                      
                      * Path 4:{1}: YES(?,O(n^1))
                        -------------------------
                        
                        We consider the following Problem:
                        
                          Strict DPs: {activate^#(n__c()) -> c^#()}
                          Strict Trs: {activate(n__c()) -> c()}
                          Weak Trs:
                            {  activate(n__d()) -> d()
                             , activate(X) -> X
                             , d() -> n__d()
                             , c() -> d()
                             , c() -> n__c()}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(?,O(n^1))
                        
                        Proof:
                          We consider the following Problem:
                          
                            Strict DPs: {activate^#(n__c()) -> c^#()}
                            Strict Trs: {activate(n__c()) -> c()}
                            Weak Trs:
                              {  activate(n__d()) -> d()
                               , activate(X) -> X
                               , d() -> n__d()
                               , c() -> d()
                               , c() -> n__c()}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(?,O(n^1))
                          
                          Proof:
                            We consider the following Problem:
                            
                              Strict DPs: {activate^#(n__c()) -> c^#()}
                              Strict Trs: {activate(n__c()) -> c()}
                              Weak Trs:
                                {  activate(n__d()) -> d()
                                 , activate(X) -> X
                                 , d() -> n__d()
                                 , c() -> d()
                                 , c() -> n__c()}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(?,O(n^1))
                            
                            Proof:
                              No rule is usable.
                              
                              We consider the following Problem:
                              
                                Strict DPs: {activate^#(n__c()) -> c^#()}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(?,O(n^1))
                              
                              Proof:
                                The problem is match-bounded by 1.
                                The enriched problem is compatible with the following automaton:
                                {  n__c_0() -> 2
                                 , activate^#_0(2) -> 1
                                 , c^#_0() -> 1
                                 , c^#_1() -> 1}
                      
                      * Path 4:{1}->6:{7}: subsumed
                        ---------------------------
                        
                        This path is subsumed by the proof of paths 4:{1}->6:{7}->7:{6}.
                      
                      * Path 4:{1}->6:{7}->7:{6}: YES(O(1),O(1))
                        ----------------------------------------
                        
                        We consider the following Problem:
                        
                          Strict Trs: {activate(n__c()) -> c()}
                          Weak DPs:
                            {  activate^#(n__c()) -> c^#()
                             , c^#() -> d^#()}
                          Weak Trs:
                            {  activate(n__d()) -> d()
                             , activate(X) -> X
                             , d() -> n__d()
                             , c() -> d()
                             , c() -> n__c()}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(O(1),O(1))
                        
                        Proof:
                          We consider the following Problem:
                          
                            Strict Trs: {activate(n__c()) -> c()}
                            Weak DPs:
                              {  activate^#(n__c()) -> c^#()
                               , c^#() -> d^#()}
                            Weak Trs:
                              {  activate(n__d()) -> d()
                               , activate(X) -> X
                               , d() -> n__d()
                               , c() -> d()
                               , c() -> n__c()}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            We consider the following Problem:
                            
                              Strict Trs: {activate(n__c()) -> c()}
                              Weak DPs:
                                {  activate^#(n__c()) -> c^#()
                                 , c^#() -> d^#()}
                              Weak Trs:
                                {  activate(n__d()) -> d()
                                 , activate(X) -> X
                                 , d() -> n__d()
                                 , c() -> d()
                                 , c() -> n__c()}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              No rule is usable.
                              
                              We consider the following Problem:
                              
                                Weak DPs:
                                  {  activate^#(n__c()) -> c^#()
                                   , c^#() -> d^#()}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(O(1),O(1))
                              
                              Proof:
                                Empty rules are trivially bounded
                      
                      * Path 4:{1}->5:{8}: YES(O(1),O(1))
                        ---------------------------------
                        
                        We consider the following Problem:
                        
                          Strict Trs: {activate(n__c()) -> c()}
                          Weak DPs: {activate^#(n__c()) -> c^#()}
                          Weak Trs:
                            {  activate(n__d()) -> d()
                             , activate(X) -> X
                             , d() -> n__d()
                             , c() -> d()
                             , c() -> n__c()}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(O(1),O(1))
                        
                        Proof:
                          We consider the following Problem:
                          
                            Strict Trs: {activate(n__c()) -> c()}
                            Weak DPs: {activate^#(n__c()) -> c^#()}
                            Weak Trs:
                              {  activate(n__d()) -> d()
                               , activate(X) -> X
                               , d() -> n__d()
                               , c() -> d()
                               , c() -> n__c()}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            We consider the following Problem:
                            
                              Strict Trs: {activate(n__c()) -> c()}
                              Weak DPs: {activate^#(n__c()) -> c^#()}
                              Weak Trs:
                                {  activate(n__d()) -> d()
                                 , activate(X) -> X
                                 , d() -> n__d()
                                 , c() -> d()
                                 , c() -> n__c()}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              No rule is usable.
                              
                              We consider the following Problem:
                              
                                Weak DPs: {activate^#(n__c()) -> c^#()}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(O(1),O(1))
                              
                              Proof:
                                Empty rules are trivially bounded
                      
                      * Path 3:{2}: subsumed
                        --------------------
                        
                        This path is subsumed by the proof of paths 3:{2}->7:{6}.
                      
                      * Path 3:{2}->7:{6}: YES(O(1),O(1))
                        ---------------------------------
                        
                        We consider the following Problem:
                        
                          Strict Trs: {activate(n__c()) -> c()}
                          Weak DPs: {activate^#(n__d()) -> d^#()}
                          Weak Trs:
                            {  activate(n__d()) -> d()
                             , activate(X) -> X
                             , d() -> n__d()
                             , c() -> d()
                             , c() -> n__c()}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(O(1),O(1))
                        
                        Proof:
                          We consider the following Problem:
                          
                            Strict Trs: {activate(n__c()) -> c()}
                            Weak DPs: {activate^#(n__d()) -> d^#()}
                            Weak Trs:
                              {  activate(n__d()) -> d()
                               , activate(X) -> X
                               , d() -> n__d()
                               , c() -> d()
                               , c() -> n__c()}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            We consider the following Problem:
                            
                              Strict Trs: {activate(n__c()) -> c()}
                              Weak DPs: {activate^#(n__d()) -> d^#()}
                              Weak Trs:
                                {  activate(n__d()) -> d()
                                 , activate(X) -> X
                                 , d() -> n__d()
                                 , c() -> d()
                                 , c() -> n__c()}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              No rule is usable.
                              
                              We consider the following Problem:
                              
                                Weak DPs: {activate^#(n__d()) -> d^#()}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(O(1),O(1))
                              
                              Proof:
                                Empty rules are trivially bounded
                      
                      * Path 2:{3}: YES(O(1),O(1))
                        --------------------------
                        
                        We consider the following Problem:
                        
                          Strict Trs: {activate(n__c()) -> c()}
                          Weak Trs:
                            {  activate(n__d()) -> d()
                             , activate(X) -> X
                             , d() -> n__d()
                             , c() -> d()
                             , c() -> n__c()}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(O(1),O(1))
                        
                        Proof:
                          We consider the following Problem:
                          
                            Strict Trs: {activate(n__c()) -> c()}
                            Weak Trs:
                              {  activate(n__d()) -> d()
                               , activate(X) -> X
                               , d() -> n__d()
                               , c() -> d()
                               , c() -> n__c()}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            We consider the following Problem:
                            
                              Strict Trs: {activate(n__c()) -> c()}
                              Weak Trs:
                                {  activate(n__d()) -> d()
                                 , activate(X) -> X
                                 , d() -> n__d()
                                 , c() -> d()
                                 , c() -> n__c()}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              No rule is usable.
                              
                              We consider the following Problem:
                              
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(O(1),O(1))
                              
                              Proof:
                                Empty rules are trivially bounded
                      
                      * Path 1:{4,5}: YES(O(1),O(1))
                        ----------------------------
                        
                        We consider the following Problem:
                        
                          Strict Trs: {activate(n__c()) -> c()}
                          Weak Trs:
                            {  activate(n__d()) -> d()
                             , activate(X) -> X
                             , d() -> n__d()
                             , c() -> d()
                             , c() -> n__c()}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(O(1),O(1))
                        
                        Proof:
                          We consider the following Problem:
                          
                            Strict Trs: {activate(n__c()) -> c()}
                            Weak Trs:
                              {  activate(n__d()) -> d()
                               , activate(X) -> X
                               , d() -> n__d()
                               , c() -> d()
                               , c() -> n__c()}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            We consider the following Problem:
                            
                              Strict Trs: {activate(n__c()) -> c()}
                              Weak Trs:
                                {  activate(n__d()) -> d()
                                 , activate(X) -> X
                                 , d() -> n__d()
                                 , c() -> d()
                                 , c() -> n__c()}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              No rule is usable.
                              
                              We consider the following Problem:
                              
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(O(1),O(1))
                              
                              Proof:
                                Empty rules are trivially bounded

Hurray, we answered YES(?,O(n^1))