We consider the following Problem: Strict Trs: { g(X) -> h(activate(X)) , c() -> d() , h(n__d()) -> g(n__c()) , d() -> n__d() , c() -> n__c() , activate(n__d()) -> d() , activate(n__c()) -> c() , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { g(X) -> h(activate(X)) , c() -> d() , h(n__d()) -> g(n__c()) , d() -> n__d() , c() -> n__c() , activate(n__d()) -> d() , activate(n__c()) -> c() , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { c() -> d() , c() -> n__c()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(g) = {}, Uargs(h) = {1}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: g(x1) = [1 0] x1 + [1] [1 0] [1] h(x1) = [1 0] x1 + [1] [1 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] c() = [2] [0] d() = [0] [0] n__d() = [0] [0] n__c() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { g(X) -> h(activate(X)) , h(n__d()) -> g(n__c()) , d() -> n__d() , activate(n__d()) -> d() , activate(n__c()) -> c() , activate(X) -> X} Weak Trs: { c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {d() -> n__d()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(g) = {}, Uargs(h) = {1}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: g(x1) = [1 0] x1 + [1] [1 0] [1] h(x1) = [1 0] x1 + [1] [1 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] c() = [2] [0] d() = [2] [0] n__d() = [0] [0] n__c() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { g(X) -> h(activate(X)) , h(n__d()) -> g(n__c()) , activate(n__d()) -> d() , activate(n__c()) -> c() , activate(X) -> X} Weak Trs: { d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {g(X) -> h(activate(X))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(g) = {}, Uargs(h) = {1}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: g(x1) = [1 0] x1 + [3] [1 0] [1] h(x1) = [1 0] x1 + [1] [1 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] c() = [0] [0] d() = [0] [0] n__d() = [0] [0] n__c() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { h(n__d()) -> g(n__c()) , activate(n__d()) -> d() , activate(n__c()) -> c() , activate(X) -> X} Weak Trs: { g(X) -> h(activate(X)) , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {h(n__d()) -> g(n__c())} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(g) = {}, Uargs(h) = {1}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: g(x1) = [1 0] x1 + [0] [0 0] [1] h(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [1] c() = [1] [0] d() = [1] [0] n__d() = [1] [0] n__c() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { activate(n__d()) -> d() , activate(n__c()) -> c() , activate(X) -> X} Weak Trs: { h(n__d()) -> g(n__c()) , g(X) -> h(activate(X)) , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { activate(n__d()) -> d() , activate(X) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(g) = {}, Uargs(h) = {1}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: g(x1) = [1 2] x1 + [1] [0 0] [1] h(x1) = [1 2] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [1] [0 1] [0] c() = [1] [2] d() = [1] [2] n__d() = [1] [2] n__c() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {activate(n__c()) -> c()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , h(n__d()) -> g(n__c()) , g(X) -> h(activate(X)) , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: {activate(n__c()) -> c()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , h(n__d()) -> g(n__c()) , g(X) -> h(activate(X)) , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We have computed the following dependency pairs Strict DPs: {activate^#(n__c()) -> c^#()} Weak DPs: { activate^#(n__d()) -> d^#() , activate^#(X) -> c_3() , h^#(n__d()) -> g^#(n__c()) , g^#(X) -> h^#(activate(X)) , d^#() -> c_6() , c^#() -> d^#() , c^#() -> c_8()} We consider the following Problem: Strict DPs: {activate^#(n__c()) -> c^#()} Strict Trs: {activate(n__c()) -> c()} Weak DPs: { activate^#(n__d()) -> d^#() , activate^#(X) -> c_3() , h^#(n__d()) -> g^#(n__c()) , g^#(X) -> h^#(activate(X)) , d^#() -> c_6() , c^#() -> d^#() , c^#() -> c_8()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , h(n__d()) -> g(n__c()) , g(X) -> h(activate(X)) , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We replace strict/weak-rules by the corresponding usable rules: Strict Usable Rules: {activate(n__c()) -> c()} Weak Usable Rules: { activate(n__d()) -> d() , activate(X) -> X , d() -> n__d() , c() -> d() , c() -> n__c()} We consider the following Problem: Strict DPs: {activate^#(n__c()) -> c^#()} Strict Trs: {activate(n__c()) -> c()} Weak DPs: { activate^#(n__d()) -> d^#() , activate^#(X) -> c_3() , h^#(n__d()) -> g^#(n__c()) , g^#(X) -> h^#(activate(X)) , d^#() -> c_6() , c^#() -> d^#() , c^#() -> c_8()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {activate^#(n__c()) -> c^#()} Strict Trs: {activate(n__c()) -> c()} Weak DPs: { activate^#(n__d()) -> d^#() , activate^#(X) -> c_3() , h^#(n__d()) -> g^#(n__c()) , g^#(X) -> h^#(activate(X)) , d^#() -> c_6() , c^#() -> d^#() , c^#() -> c_8()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We use following congruence DG for path analysis ->4:{1} [ YES(?,O(n^1)) ] | |->6:{7} [ subsumed ] | | | `->7:{6} [ YES(O(1),O(1)) ] | `->5:{8} [ YES(O(1),O(1)) ] ->3:{2} [ subsumed ] | `->7:{6} [ YES(O(1),O(1)) ] ->2:{3} [ YES(O(1),O(1)) ] ->1:{4,5} [ YES(O(1),O(1)) ] Here dependency-pairs are as follows: Strict DPs: {1: activate^#(n__c()) -> c^#()} WeakDPs DPs: { 2: activate^#(n__d()) -> d^#() , 3: activate^#(X) -> c_3() , 4: h^#(n__d()) -> g^#(n__c()) , 5: g^#(X) -> h^#(activate(X)) , 6: d^#() -> c_6() , 7: c^#() -> d^#() , 8: c^#() -> c_8()} * Path 4:{1}: YES(?,O(n^1)) ------------------------- We consider the following Problem: Strict DPs: {activate^#(n__c()) -> c^#()} Strict Trs: {activate(n__c()) -> c()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {activate^#(n__c()) -> c^#()} Strict Trs: {activate(n__c()) -> c()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {activate^#(n__c()) -> c^#()} Strict Trs: {activate(n__c()) -> c()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: No rule is usable. We consider the following Problem: Strict DPs: {activate^#(n__c()) -> c^#()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { n__c_0() -> 2 , activate^#_0(2) -> 1 , c^#_0() -> 1 , c^#_1() -> 1} * Path 4:{1}->6:{7}: subsumed --------------------------- This path is subsumed by the proof of paths 4:{1}->6:{7}->7:{6}. * Path 4:{1}->6:{7}->7:{6}: YES(O(1),O(1)) ---------------------------------------- We consider the following Problem: Strict Trs: {activate(n__c()) -> c()} Weak DPs: { activate^#(n__c()) -> c^#() , c^#() -> d^#()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {activate(n__c()) -> c()} Weak DPs: { activate^#(n__c()) -> c^#() , c^#() -> d^#()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {activate(n__c()) -> c()} Weak DPs: { activate^#(n__c()) -> c^#() , c^#() -> d^#()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: { activate^#(n__c()) -> c^#() , c^#() -> d^#()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 4:{1}->5:{8}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict Trs: {activate(n__c()) -> c()} Weak DPs: {activate^#(n__c()) -> c^#()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {activate(n__c()) -> c()} Weak DPs: {activate^#(n__c()) -> c^#()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {activate(n__c()) -> c()} Weak DPs: {activate^#(n__c()) -> c^#()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {activate^#(n__c()) -> c^#()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{2}: subsumed -------------------- This path is subsumed by the proof of paths 3:{2}->7:{6}. * Path 3:{2}->7:{6}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict Trs: {activate(n__c()) -> c()} Weak DPs: {activate^#(n__d()) -> d^#()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {activate(n__c()) -> c()} Weak DPs: {activate^#(n__d()) -> d^#()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {activate(n__c()) -> c()} Weak DPs: {activate^#(n__d()) -> d^#()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {activate^#(n__d()) -> d^#()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 2:{3}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict Trs: {activate(n__c()) -> c()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {activate(n__c()) -> c()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {activate(n__c()) -> c()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 1:{4,5}: YES(O(1),O(1)) ---------------------------- We consider the following Problem: Strict Trs: {activate(n__c()) -> c()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {activate(n__c()) -> c()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: {activate(n__c()) -> c()} Weak Trs: { activate(n__d()) -> d() , activate(X) -> X , d() -> n__d() , c() -> d() , c() -> n__c()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))