We consider the following Problem:

  Strict Trs:
    {  active(g(X)) -> mark(h(X))
     , active(c()) -> mark(d())
     , active(h(d())) -> mark(g(c()))
     , proper(g(X)) -> g(proper(X))
     , proper(h(X)) -> h(proper(X))
     , proper(c()) -> ok(c())
     , proper(d()) -> ok(d())
     , g(ok(X)) -> ok(g(X))
     , h(ok(X)) -> ok(h(X))
     , top(mark(X)) -> top(proper(X))
     , top(ok(X)) -> top(active(X))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  We consider the following Problem:
  
    Strict Trs:
      {  active(g(X)) -> mark(h(X))
       , active(c()) -> mark(d())
       , active(h(d())) -> mark(g(c()))
       , proper(g(X)) -> g(proper(X))
       , proper(h(X)) -> h(proper(X))
       , proper(c()) -> ok(c())
       , proper(d()) -> ok(d())
       , g(ok(X)) -> ok(g(X))
       , h(ok(X)) -> ok(h(X))
       , top(mark(X)) -> top(proper(X))
       , top(ok(X)) -> top(active(X))}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component: {top(ok(X)) -> top(active(X))}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(active) = {}, Uargs(g) = {1}, Uargs(mark) = {1},
        Uargs(h) = {1}, Uargs(proper) = {}, Uargs(ok) = {1},
        Uargs(top) = {1}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       active(x1) = [1 0] x1 + [1]
                    [1 0]      [1]
       g(x1) = [1 0] x1 + [0]
               [0 0]      [1]
       mark(x1) = [1 0] x1 + [1]
                  [1 0]      [1]
       h(x1) = [1 0] x1 + [0]
               [0 0]      [1]
       c() = [0]
             [0]
       d() = [0]
             [0]
       proper(x1) = [0 0] x1 + [1]
                    [0 0]      [0]
       ok(x1) = [1 0] x1 + [3]
                [0 1]      [3]
       top(x1) = [1 0] x1 + [0]
                 [1 0]      [0]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  active(g(X)) -> mark(h(X))
         , active(c()) -> mark(d())
         , active(h(d())) -> mark(g(c()))
         , proper(g(X)) -> g(proper(X))
         , proper(h(X)) -> h(proper(X))
         , proper(c()) -> ok(c())
         , proper(d()) -> ok(d())
         , g(ok(X)) -> ok(g(X))
         , h(ok(X)) -> ok(h(X))
         , top(mark(X)) -> top(proper(X))}
      Weak Trs: {top(ok(X)) -> top(active(X))}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component:
        {  proper(c()) -> ok(c())
         , proper(d()) -> ok(d())}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(active) = {}, Uargs(g) = {1}, Uargs(mark) = {1},
          Uargs(h) = {1}, Uargs(proper) = {}, Uargs(ok) = {1},
          Uargs(top) = {1}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         active(x1) = [1 0] x1 + [1]
                      [1 0]      [1]
         g(x1) = [1 0] x1 + [0]
                 [0 0]      [0]
         mark(x1) = [1 0] x1 + [1]
                    [1 0]      [1]
         h(x1) = [1 0] x1 + [0]
                 [0 0]      [0]
         c() = [0]
               [0]
         d() = [0]
               [0]
         proper(x1) = [0 0] x1 + [3]
                      [0 0]      [2]
         ok(x1) = [1 0] x1 + [1]
                  [0 0]      [1]
         top(x1) = [1 0] x1 + [0]
                   [0 0]      [1]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  active(g(X)) -> mark(h(X))
           , active(c()) -> mark(d())
           , active(h(d())) -> mark(g(c()))
           , proper(g(X)) -> g(proper(X))
           , proper(h(X)) -> h(proper(X))
           , g(ok(X)) -> ok(g(X))
           , h(ok(X)) -> ok(h(X))
           , top(mark(X)) -> top(proper(X))}
        Weak Trs:
          {  proper(c()) -> ok(c())
           , proper(d()) -> ok(d())
           , top(ok(X)) -> top(active(X))}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component: {active(h(d())) -> mark(g(c()))}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(active) = {}, Uargs(g) = {1}, Uargs(mark) = {1},
            Uargs(h) = {1}, Uargs(proper) = {}, Uargs(ok) = {1},
            Uargs(top) = {1}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           active(x1) = [1 0] x1 + [1]
                        [1 0]      [1]
           g(x1) = [1 0] x1 + [0]
                   [0 0]      [0]
           mark(x1) = [1 0] x1 + [1]
                      [1 0]      [1]
           h(x1) = [1 0] x1 + [0]
                   [0 0]      [1]
           c() = [0]
                 [0]
           d() = [1]
                 [0]
           proper(x1) = [0 0] x1 + [2]
                        [0 0]      [1]
           ok(x1) = [1 0] x1 + [1]
                    [0 0]      [1]
           top(x1) = [1 0] x1 + [0]
                     [0 0]      [1]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  active(g(X)) -> mark(h(X))
             , active(c()) -> mark(d())
             , proper(g(X)) -> g(proper(X))
             , proper(h(X)) -> h(proper(X))
             , g(ok(X)) -> ok(g(X))
             , h(ok(X)) -> ok(h(X))
             , top(mark(X)) -> top(proper(X))}
          Weak Trs:
            {  active(h(d())) -> mark(g(c()))
             , proper(c()) -> ok(c())
             , proper(d()) -> ok(d())
             , top(ok(X)) -> top(active(X))}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component:
            {  active(g(X)) -> mark(h(X))
             , active(c()) -> mark(d())}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            The following argument positions are usable:
              Uargs(active) = {}, Uargs(g) = {1}, Uargs(mark) = {1},
              Uargs(h) = {1}, Uargs(proper) = {}, Uargs(ok) = {1},
              Uargs(top) = {1}
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             active(x1) = [1 0] x1 + [1]
                          [1 0]      [0]
             g(x1) = [1 0] x1 + [0]
                     [0 0]      [1]
             mark(x1) = [1 0] x1 + [0]
                        [1 0]      [0]
             h(x1) = [1 0] x1 + [0]
                     [0 0]      [0]
             c() = [0]
                   [0]
             d() = [0]
                   [0]
             proper(x1) = [0 0] x1 + [2]
                          [0 1]      [0]
             ok(x1) = [1 0] x1 + [2]
                      [0 1]      [0]
             top(x1) = [1 0] x1 + [0]
                       [0 0]      [1]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Strict Trs:
              {  proper(g(X)) -> g(proper(X))
               , proper(h(X)) -> h(proper(X))
               , g(ok(X)) -> ok(g(X))
               , h(ok(X)) -> ok(h(X))
               , top(mark(X)) -> top(proper(X))}
            Weak Trs:
              {  active(g(X)) -> mark(h(X))
               , active(c()) -> mark(d())
               , active(h(d())) -> mark(g(c()))
               , proper(c()) -> ok(c())
               , proper(d()) -> ok(d())
               , top(ok(X)) -> top(active(X))}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            The weightgap principle applies, where following rules are oriented strictly:
            
            TRS Component: {top(mark(X)) -> top(proper(X))}
            
            Interpretation of nonconstant growth:
            -------------------------------------
              The following argument positions are usable:
                Uargs(active) = {}, Uargs(g) = {1}, Uargs(mark) = {1},
                Uargs(h) = {1}, Uargs(proper) = {}, Uargs(ok) = {1},
                Uargs(top) = {1}
              We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
              Interpretation Functions:
               active(x1) = [1 0] x1 + [3]
                            [0 0]      [0]
               g(x1) = [1 0] x1 + [1]
                       [0 0]      [0]
               mark(x1) = [1 2] x1 + [1]
                          [0 0]      [0]
               h(x1) = [1 0] x1 + [1]
                       [0 0]      [0]
               c() = [2]
                     [2]
               d() = [0]
                     [2]
               proper(x1) = [1 0] x1 + [0]
                            [0 1]      [0]
               ok(x1) = [1 0] x1 + [0]
                        [0 0]      [2]
               top(x1) = [1 2] x1 + [0]
                         [0 0]      [1]
            
            The strictly oriented rules are moved into the weak component.
            
            We consider the following Problem:
            
              Strict Trs:
                {  proper(g(X)) -> g(proper(X))
                 , proper(h(X)) -> h(proper(X))
                 , g(ok(X)) -> ok(g(X))
                 , h(ok(X)) -> ok(h(X))}
              Weak Trs:
                {  top(mark(X)) -> top(proper(X))
                 , active(g(X)) -> mark(h(X))
                 , active(c()) -> mark(d())
                 , active(h(d())) -> mark(g(c()))
                 , proper(c()) -> ok(c())
                 , proper(d()) -> ok(d())
                 , top(ok(X)) -> top(active(X))}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(?,O(n^1))
            
            Proof:
              The weightgap principle applies, where following rules are oriented strictly:
              
              TRS Component:
                {  proper(g(X)) -> g(proper(X))
                 , proper(h(X)) -> h(proper(X))}
              
              Interpretation of nonconstant growth:
              -------------------------------------
                The following argument positions are usable:
                  Uargs(active) = {}, Uargs(g) = {1}, Uargs(mark) = {1},
                  Uargs(h) = {1}, Uargs(proper) = {}, Uargs(ok) = {1},
                  Uargs(top) = {1}
                We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                Interpretation Functions:
                 active(x1) = [1 1] x1 + [0]
                              [0 0]      [1]
                 g(x1) = [1 0] x1 + [0]
                         [0 1]      [1]
                 mark(x1) = [1 1] x1 + [0]
                            [0 0]      [1]
                 h(x1) = [1 0] x1 + [0]
                         [0 1]      [1]
                 c() = [0]
                       [0]
                 d() = [0]
                       [0]
                 proper(x1) = [0 1] x1 + [0]
                              [0 1]      [0]
                 ok(x1) = [1 2] x1 + [0]
                          [0 0]      [0]
                 top(x1) = [1 0] x1 + [0]
                           [0 0]      [1]
              
              The strictly oriented rules are moved into the weak component.
              
              We consider the following Problem:
              
                Strict Trs:
                  {  g(ok(X)) -> ok(g(X))
                   , h(ok(X)) -> ok(h(X))}
                Weak Trs:
                  {  proper(g(X)) -> g(proper(X))
                   , proper(h(X)) -> h(proper(X))
                   , top(mark(X)) -> top(proper(X))
                   , active(g(X)) -> mark(h(X))
                   , active(c()) -> mark(d())
                   , active(h(d())) -> mark(g(c()))
                   , proper(c()) -> ok(c())
                   , proper(d()) -> ok(d())
                   , top(ok(X)) -> top(active(X))}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(?,O(n^1))
              
              Proof:
                We consider the following Problem:
                
                  Strict Trs:
                    {  g(ok(X)) -> ok(g(X))
                     , h(ok(X)) -> ok(h(X))}
                  Weak Trs:
                    {  proper(g(X)) -> g(proper(X))
                     , proper(h(X)) -> h(proper(X))
                     , top(mark(X)) -> top(proper(X))
                     , active(g(X)) -> mark(h(X))
                     , active(c()) -> mark(d())
                     , active(h(d())) -> mark(g(c()))
                     , proper(c()) -> ok(c())
                     , proper(d()) -> ok(d())
                     , top(ok(X)) -> top(active(X))}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(?,O(n^1))
                
                Proof:
                  The problem is match-bounded by 1.
                  The enriched problem is compatible with the following automaton:
                  {  active_0(3) -> 1
                   , active_0(5) -> 1
                   , active_0(6) -> 1
                   , active_0(8) -> 1
                   , g_0(3) -> 2
                   , g_0(5) -> 2
                   , g_0(6) -> 2
                   , g_0(8) -> 2
                   , g_1(3) -> 10
                   , g_1(5) -> 10
                   , g_1(6) -> 10
                   , g_1(8) -> 10
                   , mark_0(3) -> 3
                   , mark_0(5) -> 3
                   , mark_0(6) -> 1
                   , mark_0(6) -> 3
                   , mark_0(8) -> 3
                   , h_0(3) -> 4
                   , h_0(5) -> 4
                   , h_0(6) -> 4
                   , h_0(8) -> 4
                   , h_1(3) -> 11
                   , h_1(5) -> 11
                   , h_1(6) -> 11
                   , h_1(8) -> 11
                   , c_0() -> 5
                   , d_0() -> 6
                   , proper_0(3) -> 7
                   , proper_0(5) -> 7
                   , proper_0(6) -> 7
                   , proper_0(8) -> 7
                   , ok_0(3) -> 8
                   , ok_0(5) -> 7
                   , ok_0(5) -> 8
                   , ok_0(6) -> 7
                   , ok_0(6) -> 8
                   , ok_0(8) -> 8
                   , ok_1(10) -> 2
                   , ok_1(10) -> 10
                   , ok_1(11) -> 4
                   , ok_1(11) -> 11
                   , top_0(1) -> 9
                   , top_0(3) -> 9
                   , top_0(5) -> 9
                   , top_0(6) -> 9
                   , top_0(7) -> 9
                   , top_0(8) -> 9}

Hurray, we answered YES(?,O(n^1))