(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

active(g(X)) → mark(h(X))
active(c) → mark(d)
active(h(d)) → mark(g(c))
proper(g(X)) → g(proper(X))
proper(h(X)) → h(proper(X))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(X)) → ok(g(X))
h(ok(X)) → ok(h(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

ACTIVE(g(z0)) → c1(H(z0))
ACTIVE(h(d)) → c3(G(c))
PROPER(g(z0)) → c4(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c5(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
S tuples:

ACTIVE(g(z0)) → c1(H(z0))
ACTIVE(h(d)) → c3(G(c))
PROPER(g(z0)) → c4(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c5(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:

active, proper, g, h, top

Defined Pair Symbols:

ACTIVE, PROPER, G, H, TOP

Compound Symbols:

c1, c3, c4, c5, c8, c9, c10, c11

(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

ACTIVE(h(d)) → c3(G(c))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

ACTIVE(g(z0)) → c1(H(z0))
PROPER(g(z0)) → c4(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c5(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
S tuples:

ACTIVE(g(z0)) → c1(H(z0))
PROPER(g(z0)) → c4(G(proper(z0)), PROPER(z0))
PROPER(h(z0)) → c5(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:

active, proper, g, h, top

Defined Pair Symbols:

ACTIVE, PROPER, G, H, TOP

Compound Symbols:

c1, c4, c5, c8, c9, c10, c11

(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace PROPER(g(z0)) → c4(G(proper(z0)), PROPER(z0)) by

PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)), PROPER(c))
PROPER(g(d)) → c4(G(ok(d)), PROPER(d))
PROPER(g(x0)) → c4

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

ACTIVE(g(z0)) → c1(H(z0))
PROPER(h(z0)) → c5(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)), PROPER(c))
PROPER(g(d)) → c4(G(ok(d)), PROPER(d))
PROPER(g(x0)) → c4
S tuples:

ACTIVE(g(z0)) → c1(H(z0))
PROPER(h(z0)) → c5(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)), PROPER(c))
PROPER(g(d)) → c4(G(ok(d)), PROPER(d))
PROPER(g(x0)) → c4
K tuples:none
Defined Rule Symbols:

active, proper, g, h, top

Defined Pair Symbols:

ACTIVE, PROPER, G, H, TOP

Compound Symbols:

c1, c5, c8, c9, c10, c11, c4, c4

(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

PROPER(g(x0)) → c4

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

ACTIVE(g(z0)) → c1(H(z0))
PROPER(h(z0)) → c5(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)), PROPER(c))
PROPER(g(d)) → c4(G(ok(d)), PROPER(d))
S tuples:

ACTIVE(g(z0)) → c1(H(z0))
PROPER(h(z0)) → c5(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)), PROPER(c))
PROPER(g(d)) → c4(G(ok(d)), PROPER(d))
K tuples:none
Defined Rule Symbols:

active, proper, g, h, top

Defined Pair Symbols:

ACTIVE, PROPER, G, H, TOP

Compound Symbols:

c1, c5, c8, c9, c10, c11, c4

(9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing tuple parts

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

ACTIVE(g(z0)) → c1(H(z0))
PROPER(h(z0)) → c5(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
S tuples:

ACTIVE(g(z0)) → c1(H(z0))
PROPER(h(z0)) → c5(H(proper(z0)), PROPER(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
K tuples:none
Defined Rule Symbols:

active, proper, g, h, top

Defined Pair Symbols:

ACTIVE, PROPER, G, H, TOP

Compound Symbols:

c1, c5, c8, c9, c10, c11, c4, c4

(11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace PROPER(h(z0)) → c5(H(proper(z0)), PROPER(z0)) by

PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)), PROPER(c))
PROPER(h(d)) → c5(H(ok(d)), PROPER(d))
PROPER(h(x0)) → c5

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)), PROPER(c))
PROPER(h(d)) → c5(H(ok(d)), PROPER(d))
PROPER(h(x0)) → c5
S tuples:

ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)), PROPER(c))
PROPER(h(d)) → c5(H(ok(d)), PROPER(d))
PROPER(h(x0)) → c5
K tuples:none
Defined Rule Symbols:

active, proper, g, h, top

Defined Pair Symbols:

ACTIVE, G, H, TOP, PROPER

Compound Symbols:

c1, c8, c9, c10, c11, c4, c4, c5, c5

(13) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

PROPER(h(x0)) → c5

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)), PROPER(c))
PROPER(h(d)) → c5(H(ok(d)), PROPER(d))
S tuples:

ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)), PROPER(c))
PROPER(h(d)) → c5(H(ok(d)), PROPER(d))
K tuples:none
Defined Rule Symbols:

active, proper, g, h, top

Defined Pair Symbols:

ACTIVE, G, H, TOP, PROPER

Compound Symbols:

c1, c8, c9, c10, c11, c4, c4, c5

(15) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing tuple parts

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
S tuples:

ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
K tuples:none
Defined Rule Symbols:

active, proper, g, h, top

Defined Pair Symbols:

ACTIVE, G, H, TOP, PROPER

Compound Symbols:

c1, c8, c9, c10, c11, c4, c4, c5, c5

(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace TOP(mark(z0)) → c10(TOP(proper(z0)), PROPER(z0)) by

TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(c)) → c10(TOP(ok(c)), PROPER(c))
TOP(mark(d)) → c10(TOP(ok(d)), PROPER(d))
TOP(mark(x0)) → c10

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(c)) → c10(TOP(ok(c)), PROPER(c))
TOP(mark(d)) → c10(TOP(ok(d)), PROPER(d))
TOP(mark(x0)) → c10
S tuples:

ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(c)) → c10(TOP(ok(c)), PROPER(c))
TOP(mark(d)) → c10(TOP(ok(d)), PROPER(d))
TOP(mark(x0)) → c10
K tuples:none
Defined Rule Symbols:

active, proper, g, h, top

Defined Pair Symbols:

ACTIVE, G, H, TOP, PROPER

Compound Symbols:

c1, c8, c9, c11, c4, c4, c5, c5, c10, c10

(19) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

TOP(mark(x0)) → c10

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(c)) → c10(TOP(ok(c)), PROPER(c))
TOP(mark(d)) → c10(TOP(ok(d)), PROPER(d))
S tuples:

ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(c)) → c10(TOP(ok(c)), PROPER(c))
TOP(mark(d)) → c10(TOP(ok(d)), PROPER(d))
K tuples:none
Defined Rule Symbols:

active, proper, g, h, top

Defined Pair Symbols:

ACTIVE, G, H, TOP, PROPER

Compound Symbols:

c1, c8, c9, c11, c4, c4, c5, c5, c10

(21) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing tuple parts

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(c)) → c10(TOP(ok(c)))
TOP(mark(d)) → c10(TOP(ok(d)))
S tuples:

ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(c)) → c10(TOP(ok(c)))
TOP(mark(d)) → c10(TOP(ok(d)))
K tuples:none
Defined Rule Symbols:

active, proper, g, h, top

Defined Pair Symbols:

ACTIVE, G, H, TOP, PROPER

Compound Symbols:

c1, c8, c9, c11, c4, c4, c5, c5, c10, c10

(23) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

TOP(mark(c)) → c10(TOP(ok(c)))
We considered the (Usable) Rules:

proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
h(ok(z0)) → ok(h(z0))
g(ok(z0)) → ok(g(z0))
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
And the Tuples:

ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(c)) → c10(TOP(ok(c)))
TOP(mark(d)) → c10(TOP(ok(d)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(ACTIVE(x1)) = 0   
POL(G(x1)) = 0   
POL(H(x1)) = 0   
POL(PROPER(x1)) = 0   
POL(TOP(x1)) = [4]x1   
POL(active(x1)) = 0   
POL(c) = [4]   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c10(x1, x2)) = x1 + x2   
POL(c11(x1, x2)) = x1 + x2   
POL(c4(x1)) = x1   
POL(c4(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(c5(x1, x2)) = x1 + x2   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(d) = 0   
POL(g(x1)) = 0   
POL(h(x1)) = 0   
POL(mark(x1)) = x1   
POL(ok(x1)) = 0   
POL(proper(x1)) = 0   

(24) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(c)) → c10(TOP(ok(c)))
TOP(mark(d)) → c10(TOP(ok(d)))
S tuples:

ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(d)) → c10(TOP(ok(d)))
K tuples:

TOP(mark(c)) → c10(TOP(ok(c)))
Defined Rule Symbols:

active, proper, g, h, top

Defined Pair Symbols:

ACTIVE, G, H, TOP, PROPER

Compound Symbols:

c1, c8, c9, c11, c4, c4, c5, c5, c10, c10

(25) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

TOP(mark(d)) → c10(TOP(ok(d)))
We considered the (Usable) Rules:

proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
h(ok(z0)) → ok(h(z0))
g(ok(z0)) → ok(g(z0))
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
And the Tuples:

ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(c)) → c10(TOP(ok(c)))
TOP(mark(d)) → c10(TOP(ok(d)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(ACTIVE(x1)) = 0   
POL(G(x1)) = 0   
POL(H(x1)) = 0   
POL(PROPER(x1)) = 0   
POL(TOP(x1)) = x1   
POL(active(x1)) = x1   
POL(c) = [2]   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c10(x1, x2)) = x1 + x2   
POL(c11(x1, x2)) = x1 + x2   
POL(c4(x1)) = x1   
POL(c4(x1, x2)) = x1 + x2   
POL(c5(x1)) = x1   
POL(c5(x1, x2)) = x1 + x2   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(d) = 0   
POL(g(x1)) = [2]   
POL(h(x1)) = [2]   
POL(mark(x1)) = [2]   
POL(ok(x1)) = x1   
POL(proper(x1)) = 0   

(26) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(c)) → c10(TOP(ok(c)))
TOP(mark(d)) → c10(TOP(ok(d)))
S tuples:

ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
K tuples:

TOP(mark(c)) → c10(TOP(ok(c)))
TOP(mark(d)) → c10(TOP(ok(d)))
Defined Rule Symbols:

active, proper, g, h, top

Defined Pair Symbols:

ACTIVE, G, H, TOP, PROPER

Compound Symbols:

c1, c8, c9, c11, c4, c4, c5, c5, c10, c10

(27) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace TOP(ok(z0)) → c11(TOP(active(z0)), ACTIVE(z0)) by

TOP(ok(g(z0))) → c11(TOP(mark(h(z0))), ACTIVE(g(z0)))
TOP(ok(c)) → c11(TOP(mark(d)), ACTIVE(c))
TOP(ok(h(d))) → c11(TOP(mark(g(c))), ACTIVE(h(d)))
TOP(ok(x0)) → c11

(28) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(mark(c)) → c10(TOP(ok(c)))
TOP(mark(d)) → c10(TOP(ok(d)))
TOP(ok(g(z0))) → c11(TOP(mark(h(z0))), ACTIVE(g(z0)))
TOP(ok(c)) → c11(TOP(mark(d)), ACTIVE(c))
TOP(ok(h(d))) → c11(TOP(mark(g(c))), ACTIVE(h(d)))
TOP(ok(x0)) → c11
S tuples:

ACTIVE(g(z0)) → c1(H(z0))
G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(ok(g(z0))) → c11(TOP(mark(h(z0))), ACTIVE(g(z0)))
TOP(ok(c)) → c11(TOP(mark(d)), ACTIVE(c))
TOP(ok(h(d))) → c11(TOP(mark(g(c))), ACTIVE(h(d)))
TOP(ok(x0)) → c11
K tuples:

TOP(mark(c)) → c10(TOP(ok(c)))
TOP(mark(d)) → c10(TOP(ok(d)))
Defined Rule Symbols:

active, proper, g, h, top

Defined Pair Symbols:

ACTIVE, G, H, PROPER, TOP

Compound Symbols:

c1, c8, c9, c4, c4, c5, c5, c10, c10, c11, c11

(29) CdtUnreachableProof (EQUIVALENT transformation)

The following tuples could be removed as they are not reachable from basic start terms:

ACTIVE(g(z0)) → c1(H(z0))
PROPER(g(g(z0))) → c4(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(h(z0))) → c4(G(h(proper(z0))), PROPER(h(z0)))
PROPER(g(c)) → c4(G(ok(c)))
PROPER(g(d)) → c4(G(ok(d)))
PROPER(h(g(z0))) → c5(H(g(proper(z0))), PROPER(g(z0)))
PROPER(h(h(z0))) → c5(H(h(proper(z0))), PROPER(h(z0)))
PROPER(h(c)) → c5(H(ok(c)))
PROPER(h(d)) → c5(H(ok(d)))
TOP(mark(g(z0))) → c10(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(h(z0))) → c10(TOP(h(proper(z0))), PROPER(h(z0)))
TOP(ok(g(z0))) → c11(TOP(mark(h(z0))), ACTIVE(g(z0)))
TOP(ok(h(d))) → c11(TOP(mark(g(c))), ACTIVE(h(d)))

(30) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(mark(c)) → c10(TOP(ok(c)))
TOP(mark(d)) → c10(TOP(ok(d)))
TOP(ok(c)) → c11(TOP(mark(d)), ACTIVE(c))
TOP(ok(x0)) → c11
S tuples:

G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
TOP(ok(c)) → c11(TOP(mark(d)), ACTIVE(c))
TOP(ok(x0)) → c11
K tuples:

TOP(mark(c)) → c10(TOP(ok(c)))
TOP(mark(d)) → c10(TOP(ok(d)))
Defined Rule Symbols:

active, proper, g, h, top

Defined Pair Symbols:

G, H, TOP

Compound Symbols:

c8, c9, c10, c11, c11

(31) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing nodes:

TOP(mark(c)) → c10(TOP(ok(c)))
TOP(mark(d)) → c10(TOP(ok(d)))
TOP(ok(x0)) → c11
TOP(ok(c)) → c11(TOP(mark(d)), ACTIVE(c))

(32) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
S tuples:

G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
K tuples:none
Defined Rule Symbols:

active, proper, g, h, top

Defined Pair Symbols:

G, H

Compound Symbols:

c8, c9

(33) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
We considered the (Usable) Rules:none
And the Tuples:

G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(G(x1)) = x12   
POL(H(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(ok(x1)) = [1] + x1   

(34) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
proper(g(z0)) → g(proper(z0))
proper(h(z0)) → h(proper(z0))
proper(c) → ok(c)
proper(d) → ok(d)
g(ok(z0)) → ok(g(z0))
h(ok(z0)) → ok(h(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:

G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
S tuples:none
K tuples:

G(ok(z0)) → c8(G(z0))
H(ok(z0)) → c9(H(z0))
Defined Rule Symbols:

active, proper, g, h, top

Defined Pair Symbols:

G, H

Compound Symbols:

c8, c9

(35) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(36) BOUNDS(O(1), O(1))