Problem:
active(nats()) -> mark(cons(0(),incr(nats())))
active(pairs()) -> mark(cons(0(),incr(odds())))
active(odds()) -> mark(incr(pairs()))
active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS)))
active(head(cons(X,XS))) -> mark(X)
active(tail(cons(X,XS))) -> mark(XS)
active(cons(X1,X2)) -> cons(active(X1),X2)
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
active(head(X)) -> head(active(X))
active(tail(X)) -> tail(active(X))
cons(mark(X1),X2) -> mark(cons(X1,X2))
incr(mark(X)) -> mark(incr(X))
s(mark(X)) -> mark(s(X))
head(mark(X)) -> mark(head(X))
tail(mark(X)) -> mark(tail(X))
proper(nats()) -> ok(nats())
proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
proper(0()) -> ok(0())
proper(incr(X)) -> incr(proper(X))
proper(pairs()) -> ok(pairs())
proper(odds()) -> ok(odds())
proper(s(X)) -> s(proper(X))
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
incr(ok(X)) -> ok(incr(X))
s(ok(X)) -> ok(s(X))
head(ok(X)) -> ok(head(X))
tail(ok(X)) -> ok(tail(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
Proof:
Bounds Processor:
bound: 9
enrichment: match
automaton:
final states: {14,13,12,11,10,9,8,7}
transitions:
cons3(45,74) -> 66*
cons3(62,61) -> 58*
cons3(67,81) -> 82*
active3(66) -> 58*
pairs3() -> 71*
03() -> 67*
ok4(80) -> 58*
ok4(87) -> 61*
ok4(99) -> 114*
ok4(101) -> 108*
ok4(118) -> 114*
incr4(82) -> 94*
incr4(77) -> 87*
incr4(114) -> 107*
incr4(99) -> 100*
incr4(76) -> 58*
incr4(71) -> 80*
odds3() -> 77*
nats3() -> 77*
active4(80) -> 90*
active4(45) -> 86*
active4(48) -> 76*
top4(90) -> 14*
cons4(108,107) -> 91*
cons4(86,74) -> 58*
cons4(101,100) -> 102*
cons4(67,87) -> 80*
mark3(82) -> 76*
mark4(102) -> 91*
mark4(94) -> 58*
incr5(102) -> 105*
incr5(99) -> 127*
incr5(126) -> 119*
incr5(91) -> 90*
incr5(118) -> 127*
active5(67) -> 103*
active5(71) -> 91*
active5(133) -> 112*
active0(5) -> 7*
active0(2) -> 7*
active0(4) -> 7*
active0(6) -> 7*
active0(1) -> 7*
active0(3) -> 7*
proper4(77) -> 114*
proper4(67) -> 108*
proper4(94) -> 90*
proper4(81) -> 107*
nats0() -> 1*
cons5(103,87) -> 90*
cons5(101,127) -> 132*
cons5(120,119) -> 115*
mark0(5) -> 2*
mark0(2) -> 2*
mark0(4) -> 2*
mark0(6) -> 2*
mark0(1) -> 2*
mark0(3) -> 2*
04() -> 101*
cons0(3,1) -> 8*
cons0(3,3) -> 8*
cons0(3,5) -> 8*
cons0(4,2) -> 8*
cons0(4,4) -> 8*
cons0(4,6) -> 8*
cons0(5,1) -> 8*
cons0(5,3) -> 8*
cons0(5,5) -> 8*
cons0(6,2) -> 8*
cons0(1,2) -> 8*
cons0(6,4) -> 8*
cons0(1,4) -> 8*
cons0(6,6) -> 8*
cons0(1,6) -> 8*
cons0(2,1) -> 8*
cons0(2,3) -> 8*
cons0(2,5) -> 8*
cons0(3,2) -> 8*
cons0(3,4) -> 8*
cons0(3,6) -> 8*
cons0(4,1) -> 8*
cons0(4,3) -> 8*
cons0(4,5) -> 8*
cons0(5,2) -> 8*
cons0(5,4) -> 8*
cons0(5,6) -> 8*
cons0(6,1) -> 8*
cons0(1,1) -> 8*
cons0(6,3) -> 8*
cons0(1,3) -> 8*
cons0(6,5) -> 8*
cons0(1,5) -> 8*
cons0(2,2) -> 8*
cons0(2,4) -> 8*
cons0(2,6) -> 8*
odds4() -> 99*
00() -> 3*
proper5(105) -> 112*
proper5(100) -> 119*
proper5(82) -> 91*
proper5(99) -> 126*
proper5(101) -> 120*
incr0(5) -> 9*
incr0(2) -> 9*
incr0(4) -> 9*
incr0(6) -> 9*
incr0(1) -> 9*
incr0(3) -> 9*
mark5(105) -> 90*
pairs0() -> 4*
top5(112) -> 14*
odds0() -> 5*
incr6(115) -> 112*
incr6(132) -> 133*
incr6(127) -> 139*
incr6(129) -> 136*
incr6(176) -> 165*
incr6(178) -> 136*
s0(5) -> 10*
s0(2) -> 10*
s0(4) -> 10*
s0(6) -> 10*
s0(1) -> 10*
s0(3) -> 10*
proper6(102) -> 115*
proper6(99) -> 176*
proper6(141) -> 149*
proper6(118) -> 176*
head0(5) -> 11*
head0(2) -> 11*
head0(4) -> 11*
head0(6) -> 11*
head0(1) -> 11*
head0(3) -> 11*
nats4() -> 118*
tail0(5) -> 12*
tail0(2) -> 12*
tail0(4) -> 12*
tail0(6) -> 12*
tail0(1) -> 12*
tail0(3) -> 12*
ok5(132) -> 91*
ok5(127) -> 107*
ok5(129) -> 176,126
ok5(178) -> 176*
ok5(123) -> 168,120
proper0(5) -> 13*
proper0(2) -> 13*
proper0(4) -> 13*
proper0(6) -> 13*
proper0(1) -> 13*
proper0(3) -> 13*
05() -> 123*
ok0(5) -> 6*
ok0(2) -> 6*
ok0(4) -> 6*
ok0(6) -> 6*
ok0(1) -> 6*
ok0(3) -> 6*
odds5() -> 129*
top0(5) -> 14*
top0(2) -> 14*
top0(4) -> 14*
top0(6) -> 14*
top0(1) -> 14*
top0(3) -> 14*
ok6(137) -> 115*
ok6(184) -> 160*
ok6(136) -> 165,119
ok6(133) -> 90*
ok6(190) -> 188*
ok6(185) -> 181*
top1(36) -> 14*
cons6(140,139) -> 141*
cons6(123,136) -> 137*
cons6(148,127) -> 115*
active1(5) -> 36*
active1(2) -> 36*
active1(4) -> 36*
active1(6) -> 36*
active1(1) -> 36*
active1(3) -> 36*
ok7(145) -> 112*
ok7(192) -> 174*
ok7(194) -> 149*
ok7(151) -> 159*
ok7(195) -> 179*
proper1(5) -> 36*
proper1(2) -> 36*
proper1(4) -> 36*
proper1(6) -> 36*
proper1(1) -> 36*
proper1(3) -> 36*
incr7(137) -> 145*
incr7(136) -> 151*
incr7(188) -> 179*
incr7(158) -> 149*
incr7(190) -> 195*
incr7(165) -> 159*
ok1(30) -> 30,10
ok1(15) -> 36,13
ok1(32) -> 32,11
ok1(17) -> 36,13
ok1(34) -> 34,12
ok1(26) -> 26,8
ok1(28) -> 28,9
ok1(23) -> 36,13
active6(145) -> 149*
active6(132) -> 115*
active6(101) -> 148*
tail1(5) -> 34*
tail1(2) -> 34*
tail1(4) -> 34*
tail1(6) -> 34*
tail1(1) -> 34*
tail1(3) -> 34*
mark6(141) -> 112*
head1(5) -> 32*
head1(2) -> 32*
head1(4) -> 32*
head1(6) -> 32*
head1(1) -> 32*
head1(3) -> 32*
s6(101) -> 140*
s6(123) -> 184*
s1(5) -> 30*
s1(2) -> 30*
s1(4) -> 30*
s1(6) -> 30*
s1(1) -> 30*
s1(3) -> 30*
top6(149) -> 14*
incr1(15) -> 16*
incr1(5) -> 28*
incr1(2) -> 28*
incr1(4) -> 28*
incr1(6) -> 28*
incr1(1) -> 28*
incr1(23) -> 18*
incr1(3) -> 28*
cons7(160,159) -> 149*
cons7(152,151) -> 153*
cons7(184,151) -> 194*
cons7(164,136) -> 158*
cons1(2,6) -> 26*
cons1(17,16) -> 18*
cons1(3,1) -> 26*
cons1(3,3) -> 26*
cons1(3,5) -> 26*
cons1(4,2) -> 26*
cons1(4,4) -> 26*
cons1(4,6) -> 26*
cons1(5,1) -> 26*
cons1(5,3) -> 26*
cons1(5,5) -> 26*
cons1(6,2) -> 26*
cons1(1,2) -> 26*
cons1(6,4) -> 26*
cons1(1,4) -> 26*
cons1(6,6) -> 26*
cons1(1,6) -> 26*
cons1(2,1) -> 26*
cons1(2,3) -> 26*
cons1(2,5) -> 26*
cons1(3,2) -> 26*
cons1(3,4) -> 26*
cons1(3,6) -> 26*
cons1(4,1) -> 26*
cons1(4,3) -> 26*
cons1(4,5) -> 26*
cons1(5,2) -> 26*
cons1(5,4) -> 26*
cons1(5,6) -> 26*
cons1(6,1) -> 26*
cons1(1,1) -> 26*
cons1(6,3) -> 26*
cons1(1,3) -> 26*
cons1(6,5) -> 26*
cons1(1,5) -> 26*
cons1(2,2) -> 26*
cons1(2,4) -> 26*
proper7(140) -> 160*
proper7(127) -> 165*
proper7(139) -> 159*
proper7(129) -> 188*
proper7(101) -> 168*
proper7(178) -> 188*
proper7(153) -> 169*
odds1() -> 15*
active7(137) -> 158*
active7(194) -> 169*
active7(123) -> 164*
pairs1() -> 23*
mark7(153) -> 149*
01() -> 17*
s7(164) -> 200*
s7(168) -> 160*
s7(123) -> 152*
s7(185) -> 192*
nats1() -> 15*
top7(169) -> 14*
mark1(30) -> 30,10
mark1(32) -> 32,11
mark1(34) -> 34,12
mark1(26) -> 26,8
mark1(28) -> 28,9
mark1(18) -> 36,7
cons8(192,198) -> 201*
cons8(200,151) -> 169*
cons8(174,173) -> 169*
top2(38) -> 14*
proper8(152) -> 174*
proper8(151) -> 173*
proper8(136) -> 179*
proper8(123) -> 181*
active2(15) -> 38*
active2(17) -> 38*
active2(23) -> 38*
s8(207) -> 206*
s8(181) -> 174*
proper2(15) -> 56*
proper2(17) -> 50*
proper2(16) -> 49*
proper2(23) -> 54*
proper2(18) -> 38*
incr8(179) -> 173*
incr8(195) -> 198*
incr2(54) -> 38*
incr2(56) -> 49*
incr2(48) -> 46*
incr2(43) -> 44*
nats5() -> 178*
cons2(50,49) -> 38*
cons2(45,44) -> 46*
06() -> 185*
mark2(46) -> 38*
odds6() -> 190*
pairs2() -> 48*
nats6() -> 190*
02() -> 45*
ok8(201) -> 169*
ok8(198) -> 173*
odds2() -> 43*
active8(184) -> 200*
active8(201) -> 203*
active8(185) -> 207*
nats2() -> 43*
top8(203) -> 14*
top3(58) -> 14*
cons9(206,198) -> 203*
proper3(45) -> 62*
proper3(44) -> 61*
proper3(46) -> 58*
proper3(48) -> 63*
proper3(43) -> 70*
active9(192) -> 206*
ok2(45) -> 50*
ok2(48) -> 54*
ok2(43) -> 56*
ok3(77) -> 70*
ok3(67) -> 62*
ok3(74) -> 49*
ok3(71) -> 63*
ok3(66) -> 38*
incr3(70) -> 61*
incr3(77) -> 81*
incr3(63) -> 58*
incr3(48) -> 66*
incr3(43) -> 74*
problem:
Qed