(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(first(0, Z)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(sel(0, cons(X, Z))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
mark(from(X)) → active(from(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(first(X1, X2)) → active(first(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
from(mark(X)) → from(X)
from(active(X)) → from(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
first(mark(X1), X2) → first(X1, X2)
first(X1, mark(X2)) → first(X1, X2)
first(active(X1), X2) → first(X1, X2)
first(X1, active(X2)) → first(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(from(z0)) → mark(cons(z0, from(s(z0))))
active(first(0, z0)) → mark(nil)
active(first(s(z0), cons(z1, z2))) → mark(cons(z1, first(z0, z2)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
mark(from(z0)) → active(from(mark(z0)))
mark(cons(z0, z1)) → active(cons(mark(z0), z1))
mark(s(z0)) → active(s(mark(z0)))
mark(first(z0, z1)) → active(first(mark(z0), mark(z1)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(sel(z0, z1)) → active(sel(mark(z0), mark(z1)))
from(mark(z0)) → from(z0)
from(active(z0)) → from(z0)
cons(mark(z0), z1) → cons(z0, z1)
cons(z0, mark(z1)) → cons(z0, z1)
cons(active(z0), z1) → cons(z0, z1)
cons(z0, active(z1)) → cons(z0, z1)
s(mark(z0)) → s(z0)
s(active(z0)) → s(z0)
first(mark(z0), z1) → first(z0, z1)
first(z0, mark(z1)) → first(z0, z1)
first(active(z0), z1) → first(z0, z1)
first(z0, active(z1)) → first(z0, z1)
sel(mark(z0), z1) → sel(z0, z1)
sel(z0, mark(z1)) → sel(z0, z1)
sel(active(z0), z1) → sel(z0, z1)
sel(z0, active(z1)) → sel(z0, z1)
Tuples:

ACTIVE(from(z0)) → c(MARK(cons(z0, from(s(z0)))), CONS(z0, from(s(z0))), FROM(s(z0)), S(z0))
ACTIVE(first(0, z0)) → c1(MARK(nil))
ACTIVE(first(s(z0), cons(z1, z2))) → c2(MARK(cons(z1, first(z0, z2))), CONS(z1, first(z0, z2)), FIRST(z0, z2))
ACTIVE(sel(0, cons(z0, z1))) → c3(MARK(z0))
ACTIVE(sel(s(z0), cons(z1, z2))) → c4(MARK(sel(z0, z2)), SEL(z0, z2))
MARK(from(z0)) → c5(ACTIVE(from(mark(z0))), FROM(mark(z0)), MARK(z0))
MARK(cons(z0, z1)) → c6(ACTIVE(cons(mark(z0), z1)), CONS(mark(z0), z1), MARK(z0))
MARK(s(z0)) → c7(ACTIVE(s(mark(z0))), S(mark(z0)), MARK(z0))
MARK(first(z0, z1)) → c8(ACTIVE(first(mark(z0), mark(z1))), FIRST(mark(z0), mark(z1)), MARK(z0), MARK(z1))
MARK(0) → c9(ACTIVE(0))
MARK(nil) → c10(ACTIVE(nil))
MARK(sel(z0, z1)) → c11(ACTIVE(sel(mark(z0), mark(z1))), SEL(mark(z0), mark(z1)), MARK(z0), MARK(z1))
FROM(mark(z0)) → c12(FROM(z0))
FROM(active(z0)) → c13(FROM(z0))
CONS(mark(z0), z1) → c14(CONS(z0, z1))
CONS(z0, mark(z1)) → c15(CONS(z0, z1))
CONS(active(z0), z1) → c16(CONS(z0, z1))
CONS(z0, active(z1)) → c17(CONS(z0, z1))
S(mark(z0)) → c18(S(z0))
S(active(z0)) → c19(S(z0))
FIRST(mark(z0), z1) → c20(FIRST(z0, z1))
FIRST(z0, mark(z1)) → c21(FIRST(z0, z1))
FIRST(active(z0), z1) → c22(FIRST(z0, z1))
FIRST(z0, active(z1)) → c23(FIRST(z0, z1))
SEL(mark(z0), z1) → c24(SEL(z0, z1))
SEL(z0, mark(z1)) → c25(SEL(z0, z1))
SEL(active(z0), z1) → c26(SEL(z0, z1))
SEL(z0, active(z1)) → c27(SEL(z0, z1))
S tuples:

ACTIVE(from(z0)) → c(MARK(cons(z0, from(s(z0)))), CONS(z0, from(s(z0))), FROM(s(z0)), S(z0))
ACTIVE(first(0, z0)) → c1(MARK(nil))
ACTIVE(first(s(z0), cons(z1, z2))) → c2(MARK(cons(z1, first(z0, z2))), CONS(z1, first(z0, z2)), FIRST(z0, z2))
ACTIVE(sel(0, cons(z0, z1))) → c3(MARK(z0))
ACTIVE(sel(s(z0), cons(z1, z2))) → c4(MARK(sel(z0, z2)), SEL(z0, z2))
MARK(from(z0)) → c5(ACTIVE(from(mark(z0))), FROM(mark(z0)), MARK(z0))
MARK(cons(z0, z1)) → c6(ACTIVE(cons(mark(z0), z1)), CONS(mark(z0), z1), MARK(z0))
MARK(s(z0)) → c7(ACTIVE(s(mark(z0))), S(mark(z0)), MARK(z0))
MARK(first(z0, z1)) → c8(ACTIVE(first(mark(z0), mark(z1))), FIRST(mark(z0), mark(z1)), MARK(z0), MARK(z1))
MARK(0) → c9(ACTIVE(0))
MARK(nil) → c10(ACTIVE(nil))
MARK(sel(z0, z1)) → c11(ACTIVE(sel(mark(z0), mark(z1))), SEL(mark(z0), mark(z1)), MARK(z0), MARK(z1))
FROM(mark(z0)) → c12(FROM(z0))
FROM(active(z0)) → c13(FROM(z0))
CONS(mark(z0), z1) → c14(CONS(z0, z1))
CONS(z0, mark(z1)) → c15(CONS(z0, z1))
CONS(active(z0), z1) → c16(CONS(z0, z1))
CONS(z0, active(z1)) → c17(CONS(z0, z1))
S(mark(z0)) → c18(S(z0))
S(active(z0)) → c19(S(z0))
FIRST(mark(z0), z1) → c20(FIRST(z0, z1))
FIRST(z0, mark(z1)) → c21(FIRST(z0, z1))
FIRST(active(z0), z1) → c22(FIRST(z0, z1))
FIRST(z0, active(z1)) → c23(FIRST(z0, z1))
SEL(mark(z0), z1) → c24(SEL(z0, z1))
SEL(z0, mark(z1)) → c25(SEL(z0, z1))
SEL(active(z0), z1) → c26(SEL(z0, z1))
SEL(z0, active(z1)) → c27(SEL(z0, z1))
K tuples:none
Defined Rule Symbols:

active, mark, from, cons, s, first, sel

Defined Pair Symbols:

ACTIVE, MARK, FROM, CONS, S, FIRST, SEL

Compound Symbols:

c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c27

(3) CdtUnreachableProof (EQUIVALENT transformation)

The following tuples could be removed as they are not reachable from basic start terms:

ACTIVE(from(z0)) → c(MARK(cons(z0, from(s(z0)))), CONS(z0, from(s(z0))), FROM(s(z0)), S(z0))
ACTIVE(first(0, z0)) → c1(MARK(nil))
ACTIVE(first(s(z0), cons(z1, z2))) → c2(MARK(cons(z1, first(z0, z2))), CONS(z1, first(z0, z2)), FIRST(z0, z2))
ACTIVE(sel(0, cons(z0, z1))) → c3(MARK(z0))
ACTIVE(sel(s(z0), cons(z1, z2))) → c4(MARK(sel(z0, z2)), SEL(z0, z2))
MARK(from(z0)) → c5(ACTIVE(from(mark(z0))), FROM(mark(z0)), MARK(z0))
MARK(cons(z0, z1)) → c6(ACTIVE(cons(mark(z0), z1)), CONS(mark(z0), z1), MARK(z0))
MARK(s(z0)) → c7(ACTIVE(s(mark(z0))), S(mark(z0)), MARK(z0))
MARK(first(z0, z1)) → c8(ACTIVE(first(mark(z0), mark(z1))), FIRST(mark(z0), mark(z1)), MARK(z0), MARK(z1))
MARK(sel(z0, z1)) → c11(ACTIVE(sel(mark(z0), mark(z1))), SEL(mark(z0), mark(z1)), MARK(z0), MARK(z1))
FROM(mark(z0)) → c12(FROM(z0))
FROM(active(z0)) → c13(FROM(z0))
CONS(mark(z0), z1) → c14(CONS(z0, z1))
CONS(z0, mark(z1)) → c15(CONS(z0, z1))
CONS(active(z0), z1) → c16(CONS(z0, z1))
CONS(z0, active(z1)) → c17(CONS(z0, z1))
S(mark(z0)) → c18(S(z0))
S(active(z0)) → c19(S(z0))
FIRST(mark(z0), z1) → c20(FIRST(z0, z1))
FIRST(z0, mark(z1)) → c21(FIRST(z0, z1))
FIRST(active(z0), z1) → c22(FIRST(z0, z1))
FIRST(z0, active(z1)) → c23(FIRST(z0, z1))
SEL(mark(z0), z1) → c24(SEL(z0, z1))
SEL(z0, mark(z1)) → c25(SEL(z0, z1))
SEL(active(z0), z1) → c26(SEL(z0, z1))
SEL(z0, active(z1)) → c27(SEL(z0, z1))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(from(z0)) → mark(cons(z0, from(s(z0))))
active(first(0, z0)) → mark(nil)
active(first(s(z0), cons(z1, z2))) → mark(cons(z1, first(z0, z2)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
mark(from(z0)) → active(from(mark(z0)))
mark(cons(z0, z1)) → active(cons(mark(z0), z1))
mark(s(z0)) → active(s(mark(z0)))
mark(first(z0, z1)) → active(first(mark(z0), mark(z1)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(sel(z0, z1)) → active(sel(mark(z0), mark(z1)))
from(mark(z0)) → from(z0)
from(active(z0)) → from(z0)
cons(mark(z0), z1) → cons(z0, z1)
cons(z0, mark(z1)) → cons(z0, z1)
cons(active(z0), z1) → cons(z0, z1)
cons(z0, active(z1)) → cons(z0, z1)
s(mark(z0)) → s(z0)
s(active(z0)) → s(z0)
first(mark(z0), z1) → first(z0, z1)
first(z0, mark(z1)) → first(z0, z1)
first(active(z0), z1) → first(z0, z1)
first(z0, active(z1)) → first(z0, z1)
sel(mark(z0), z1) → sel(z0, z1)
sel(z0, mark(z1)) → sel(z0, z1)
sel(active(z0), z1) → sel(z0, z1)
sel(z0, active(z1)) → sel(z0, z1)
Tuples:

MARK(0) → c9(ACTIVE(0))
MARK(nil) → c10(ACTIVE(nil))
S tuples:

MARK(0) → c9(ACTIVE(0))
MARK(nil) → c10(ACTIVE(nil))
K tuples:none
Defined Rule Symbols:

active, mark, from, cons, s, first, sel

Defined Pair Symbols:

MARK

Compound Symbols:

c9, c10

(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing nodes:

MARK(0) → c9(ACTIVE(0))
MARK(nil) → c10(ACTIVE(nil))

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

active(from(z0)) → mark(cons(z0, from(s(z0))))
active(first(0, z0)) → mark(nil)
active(first(s(z0), cons(z1, z2))) → mark(cons(z1, first(z0, z2)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
mark(from(z0)) → active(from(mark(z0)))
mark(cons(z0, z1)) → active(cons(mark(z0), z1))
mark(s(z0)) → active(s(mark(z0)))
mark(first(z0, z1)) → active(first(mark(z0), mark(z1)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(sel(z0, z1)) → active(sel(mark(z0), mark(z1)))
from(mark(z0)) → from(z0)
from(active(z0)) → from(z0)
cons(mark(z0), z1) → cons(z0, z1)
cons(z0, mark(z1)) → cons(z0, z1)
cons(active(z0), z1) → cons(z0, z1)
cons(z0, active(z1)) → cons(z0, z1)
s(mark(z0)) → s(z0)
s(active(z0)) → s(z0)
first(mark(z0), z1) → first(z0, z1)
first(z0, mark(z1)) → first(z0, z1)
first(active(z0), z1) → first(z0, z1)
first(z0, active(z1)) → first(z0, z1)
sel(mark(z0), z1) → sel(z0, z1)
sel(z0, mark(z1)) → sel(z0, z1)
sel(active(z0), z1) → sel(z0, z1)
sel(z0, active(z1)) → sel(z0, z1)
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

active, mark, from, cons, s, first, sel

Defined Pair Symbols:none

Compound Symbols:none

(7) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(8) BOUNDS(O(1), O(1))