We consider the following Problem: Strict Trs: { from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) , sel(0(), cons(X, Z)) -> X , sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , activate(n__from(X)) -> from(X) , activate(n__first(X1, X2)) -> first(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) , sel(0(), cons(X, Z)) -> X , sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , activate(n__from(X)) -> from(X) , activate(n__first(X1, X2)) -> first(X1, X2) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) , sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {}, Uargs(cons) = {2}, Uargs(n__from) = {}, Uargs(s) = {}, Uargs(first) = {}, Uargs(n__first) = {2}, Uargs(activate) = {}, Uargs(sel) = {2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 1] x1 + [2] [0 0] [2] cons(x1, x2) = [1 1] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] n__from(x1) = [0 0] x1 + [0] [1 1] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] first(x1, x2) = [0 0] x1 + [1 1] x2 + [1] [0 0] [0 0] [1] 0() = [0] [0] nil() = [0] [0] n__first(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 1] [0] activate(x1) = [1 1] x1 + [0] [0 0] [0] sel(x1, x2) = [0 0] x1 + [1 1] x2 + [1] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { sel(0(), cons(X, Z)) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , activate(n__from(X)) -> from(X) , activate(n__first(X1, X2)) -> first(X1, X2) , activate(X) -> X} Weak Trs: { from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) , sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {}, Uargs(cons) = {2}, Uargs(n__from) = {}, Uargs(s) = {}, Uargs(first) = {}, Uargs(n__first) = {2}, Uargs(activate) = {}, Uargs(sel) = {2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 0] x1 + [2] [1 0] [2] cons(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] n__from(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [0 0] x1 + [1] [1 1] [0] first(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] 0() = [3] [1] nil() = [0] [0] n__first(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] activate(x1) = [1 0] x1 + [0] [1 0] [1] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [1 1] [1 0] [3] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { sel(0(), cons(X, Z)) -> X , activate(n__from(X)) -> from(X) , activate(n__first(X1, X2)) -> first(X1, X2) , activate(X) -> X} Weak Trs: { from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) , sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(X) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {}, Uargs(cons) = {2}, Uargs(n__from) = {}, Uargs(s) = {}, Uargs(first) = {}, Uargs(n__first) = {2}, Uargs(activate) = {}, Uargs(sel) = {2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 0] x1 + [2] [1 0] [2] cons(x1, x2) = [1 0] x1 + [1 0] x2 + [2] [0 0] [0 0] [0] n__from(x1) = [1 0] x1 + [0] [0 0] [1] s(x1) = [0 0] x1 + [0] [0 0] [0] first(x1, x2) = [0 0] x1 + [1 0] x2 + [2] [0 0] [0 0] [1] 0() = [0] [0] nil() = [0] [0] n__first(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] activate(x1) = [1 0] x1 + [2] [0 1] [0] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [1 0] [3] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { sel(0(), cons(X, Z)) -> X , activate(n__from(X)) -> from(X) , activate(n__first(X1, X2)) -> first(X1, X2)} Weak Trs: { activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) , sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(n__from(X)) -> from(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {}, Uargs(cons) = {2}, Uargs(n__from) = {}, Uargs(s) = {}, Uargs(first) = {}, Uargs(n__first) = {2}, Uargs(activate) = {}, Uargs(sel) = {2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 0] x1 + [1] [0 1] [1] cons(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 0] [1] n__from(x1) = [1 0] x1 + [1] [0 1] [1] s(x1) = [0 0] x1 + [0] [0 1] [3] first(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] 0() = [0] [0] nil() = [0] [0] n__first(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] activate(x1) = [1 0] x1 + [1] [0 1] [0] sel(x1, x2) = [0 1] x1 + [1 0] x2 + [1] [0 1] [1 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { sel(0(), cons(X, Z)) -> X , activate(n__first(X1, X2)) -> first(X1, X2)} Weak Trs: { activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) , sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {sel(0(), cons(X, Z)) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {}, Uargs(cons) = {2}, Uargs(n__from) = {}, Uargs(s) = {}, Uargs(first) = {}, Uargs(n__first) = {2}, Uargs(activate) = {}, Uargs(sel) = {2} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 0] x1 + [0] [0 1] [1] cons(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] n__from(x1) = [1 0] x1 + [0] [0 1] [1] s(x1) = [0 0] x1 + [0] [0 0] [0] first(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 1] [1] 0() = [0] [0] nil() = [0] [0] n__first(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] activate(x1) = [1 0] x1 + [0] [0 1] [0] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {activate(n__first(X1, X2)) -> first(X1, X2)} Weak Trs: { sel(0(), cons(X, Z)) -> X , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) , sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: {activate(n__first(X1, X2)) -> first(X1, X2)} Weak Trs: { sel(0(), cons(X, Z)) -> X , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) , sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We have computed the following dependency pairs Strict DPs: {activate^#(n__first(X1, X2)) -> first^#(X1, X2)} Weak DPs: { sel^#(0(), cons(X, Z)) -> c_2() , activate^#(n__from(X)) -> from^#(X) , activate^#(X) -> c_4() , from^#(X) -> c_5() , first^#(X1, X2) -> c_6() , from^#(X) -> c_7() , first^#(0(), Z) -> c_8() , first^#(s(X), cons(Y, Z)) -> activate^#(Z) , sel^#(s(X), cons(Y, Z)) -> sel^#(X, activate(Z))} We consider the following Problem: Strict DPs: {activate^#(n__first(X1, X2)) -> first^#(X1, X2)} Strict Trs: {activate(n__first(X1, X2)) -> first(X1, X2)} Weak DPs: { sel^#(0(), cons(X, Z)) -> c_2() , activate^#(n__from(X)) -> from^#(X) , activate^#(X) -> c_4() , from^#(X) -> c_5() , first^#(X1, X2) -> c_6() , from^#(X) -> c_7() , first^#(0(), Z) -> c_8() , first^#(s(X), cons(Y, Z)) -> activate^#(Z) , sel^#(s(X), cons(Y, Z)) -> sel^#(X, activate(Z))} Weak Trs: { sel(0(), cons(X, Z)) -> X , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) , sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We replace strict/weak-rules by the corresponding usable rules: Strict Usable Rules: {activate(n__first(X1, X2)) -> first(X1, X2)} Weak Usable Rules: { activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} We consider the following Problem: Strict DPs: {activate^#(n__first(X1, X2)) -> first^#(X1, X2)} Strict Trs: {activate(n__first(X1, X2)) -> first(X1, X2)} Weak DPs: { sel^#(0(), cons(X, Z)) -> c_2() , activate^#(n__from(X)) -> from^#(X) , activate^#(X) -> c_4() , from^#(X) -> c_5() , first^#(X1, X2) -> c_6() , from^#(X) -> c_7() , first^#(0(), Z) -> c_8() , first^#(s(X), cons(Y, Z)) -> activate^#(Z) , sel^#(s(X), cons(Y, Z)) -> sel^#(X, activate(Z))} Weak Trs: { activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(n__first(X1, X2)) -> first(X1, X2)} Interpretation of constant growth: ---------------------------------- The following argument positions are usable: Uargs(from) = {}, Uargs(cons) = {2}, Uargs(n__from) = {}, Uargs(s) = {}, Uargs(first) = {}, Uargs(n__first) = {2}, Uargs(activate) = {}, Uargs(sel) = {}, Uargs(activate^#) = {}, Uargs(first^#) = {}, Uargs(sel^#) = {2}, Uargs(from^#) = {} We have the following constructor-based EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [0 0] x1 + [0] [0 0] [0] cons(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] n__from(x1) = [0 0] x1 + [0] [0 0] [0] s(x1) = [1 0] x1 + [2] [0 0] [0] first(x1, x2) = [1 0] x1 + [1 0] x2 + [2] [0 0] [0 0] [0] 0() = [0] [0] nil() = [0] [0] n__first(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [0] activate(x1) = [1 0] x1 + [3] [0 2] [0] sel(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] activate^#(x1) = [0 0] x1 + [0] [0 0] [1] first^#(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] sel^#(x1, x2) = [3 0] x1 + [1 0] x2 + [2] [0 0] [0 0] [1] c_2() = [0] [0] from^#(x1) = [0 0] x1 + [0] [0 0] [0] c_4() = [0] [0] c_5() = [0] [0] c_6() = [0] [0] c_7() = [0] [0] c_8() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict DPs: {activate^#(n__first(X1, X2)) -> first^#(X1, X2)} Weak DPs: { sel^#(0(), cons(X, Z)) -> c_2() , activate^#(n__from(X)) -> from^#(X) , activate^#(X) -> c_4() , from^#(X) -> c_5() , first^#(X1, X2) -> c_6() , from^#(X) -> c_7() , first^#(0(), Z) -> c_8() , first^#(s(X), cons(Y, Z)) -> activate^#(Z) , sel^#(s(X), cons(Y, Z)) -> sel^#(X, activate(Z))} Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We use following congruence DG for path analysis ->3:{1,9} [ YES(O(1),O(1)) ] | |->6:{3} [ subsumed ] | | | |->7:{5} [ YES(O(1),O(1)) ] | | | `->8:{7} [ YES(O(1),O(1)) ] | |->9:{4} [ YES(O(1),O(1)) ] | |->4:{6} [ YES(O(1),O(1)) ] | `->5:{8} [ YES(O(1),O(1)) ] ->1:{10} [ subsumed ] | `->2:{2} [ YES(O(1),O(1)) ] Here dependency-pairs are as follows: Strict DPs: {1: activate^#(n__first(X1, X2)) -> first^#(X1, X2)} WeakDPs DPs: { 2: sel^#(0(), cons(X, Z)) -> c_2() , 3: activate^#(n__from(X)) -> from^#(X) , 4: activate^#(X) -> c_4() , 5: from^#(X) -> c_5() , 6: first^#(X1, X2) -> c_6() , 7: from^#(X) -> c_7() , 8: first^#(0(), Z) -> c_8() , 9: first^#(s(X), cons(Y, Z)) -> activate^#(Z) , 10: sel^#(s(X), cons(Y, Z)) -> sel^#(X, activate(Z))} * Path 3:{1,9}: YES(O(1),O(1)) ---------------------------- We consider the following Problem: Strict DPs: {activate^#(n__first(X1, X2)) -> first^#(X1, X2)} Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: activate^#(n__first(X1, X2)) -> first^#(X1, X2) together with the congruence-graph ->1:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: activate^#(n__first(X1, X2)) -> first^#(X1, X2)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: activate^#(n__first(X1, X2)) -> first^#(X1, X2)} We consider the following Problem: Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{1,9}->6:{3}: subsumed ----------------------------- This path is subsumed by the proof of paths 3:{1,9}->6:{3}->8:{7}, 3:{1,9}->6:{3}->7:{5}. * Path 3:{1,9}->6:{3}->7:{5}: YES(O(1),O(1)) ------------------------------------------ We consider the following Problem: Weak DPs: { first^#(s(X), cons(Y, Z)) -> activate^#(Z) , activate^#(n__first(X1, X2)) -> first^#(X1, X2) , activate^#(n__from(X)) -> from^#(X)} Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: first^#(s(X), cons(Y, Z)) -> activate^#(Z) -->_1 activate^#(n__first(X1, X2)) -> first^#(X1, X2) :2 -->_1 activate^#(n__from(X)) -> from^#(X) :3 2: activate^#(n__first(X1, X2)) -> first^#(X1, X2) -->_1 first^#(s(X), cons(Y, Z)) -> activate^#(Z) :1 3: activate^#(n__from(X)) -> from^#(X) together with the congruence-graph ->1:{1,2} Weak SCC | `->2:{3} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: { 1: first^#(s(X), cons(Y, Z)) -> activate^#(Z) , 2: activate^#(n__first(X1, X2)) -> first^#(X1, X2) , 3: activate^#(n__from(X)) -> from^#(X)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 1: first^#(s(X), cons(Y, Z)) -> activate^#(Z) , 2: activate^#(n__first(X1, X2)) -> first^#(X1, X2) , 3: activate^#(n__from(X)) -> from^#(X)} We consider the following Problem: Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{1,9}->6:{3}->8:{7}: YES(O(1),O(1)) ------------------------------------------ We consider the following Problem: Weak DPs: { first^#(s(X), cons(Y, Z)) -> activate^#(Z) , activate^#(n__first(X1, X2)) -> first^#(X1, X2) , activate^#(n__from(X)) -> from^#(X)} Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: first^#(s(X), cons(Y, Z)) -> activate^#(Z) -->_1 activate^#(n__first(X1, X2)) -> first^#(X1, X2) :2 -->_1 activate^#(n__from(X)) -> from^#(X) :3 2: activate^#(n__first(X1, X2)) -> first^#(X1, X2) -->_1 first^#(s(X), cons(Y, Z)) -> activate^#(Z) :1 3: activate^#(n__from(X)) -> from^#(X) together with the congruence-graph ->1:{1,2} Weak SCC | `->2:{3} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: { 1: first^#(s(X), cons(Y, Z)) -> activate^#(Z) , 2: activate^#(n__first(X1, X2)) -> first^#(X1, X2) , 3: activate^#(n__from(X)) -> from^#(X)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 1: first^#(s(X), cons(Y, Z)) -> activate^#(Z) , 2: activate^#(n__first(X1, X2)) -> first^#(X1, X2) , 3: activate^#(n__from(X)) -> from^#(X)} We consider the following Problem: Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{1,9}->9:{4}: YES(O(1),O(1)) ----------------------------------- We consider the following Problem: Weak DPs: { first^#(s(X), cons(Y, Z)) -> activate^#(Z) , activate^#(n__first(X1, X2)) -> first^#(X1, X2)} Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: first^#(s(X), cons(Y, Z)) -> activate^#(Z) -->_1 activate^#(n__first(X1, X2)) -> first^#(X1, X2) :2 2: activate^#(n__first(X1, X2)) -> first^#(X1, X2) -->_1 first^#(s(X), cons(Y, Z)) -> activate^#(Z) :1 together with the congruence-graph ->1:{1,2} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: { 1: first^#(s(X), cons(Y, Z)) -> activate^#(Z) , 2: activate^#(n__first(X1, X2)) -> first^#(X1, X2)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 1: first^#(s(X), cons(Y, Z)) -> activate^#(Z) , 2: activate^#(n__first(X1, X2)) -> first^#(X1, X2)} We consider the following Problem: Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{1,9}->4:{6}: YES(O(1),O(1)) ----------------------------------- We consider the following Problem: Weak DPs: { first^#(s(X), cons(Y, Z)) -> activate^#(Z) , activate^#(n__first(X1, X2)) -> first^#(X1, X2)} Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: first^#(s(X), cons(Y, Z)) -> activate^#(Z) -->_1 activate^#(n__first(X1, X2)) -> first^#(X1, X2) :2 2: activate^#(n__first(X1, X2)) -> first^#(X1, X2) -->_1 first^#(s(X), cons(Y, Z)) -> activate^#(Z) :1 together with the congruence-graph ->1:{1,2} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: { 1: first^#(s(X), cons(Y, Z)) -> activate^#(Z) , 2: activate^#(n__first(X1, X2)) -> first^#(X1, X2)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 1: first^#(s(X), cons(Y, Z)) -> activate^#(Z) , 2: activate^#(n__first(X1, X2)) -> first^#(X1, X2)} We consider the following Problem: Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{1,9}->5:{8}: YES(O(1),O(1)) ----------------------------------- We consider the following Problem: Weak DPs: { first^#(s(X), cons(Y, Z)) -> activate^#(Z) , activate^#(n__first(X1, X2)) -> first^#(X1, X2)} Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: first^#(s(X), cons(Y, Z)) -> activate^#(Z) -->_1 activate^#(n__first(X1, X2)) -> first^#(X1, X2) :2 2: activate^#(n__first(X1, X2)) -> first^#(X1, X2) -->_1 first^#(s(X), cons(Y, Z)) -> activate^#(Z) :1 together with the congruence-graph ->1:{1,2} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: { 1: first^#(s(X), cons(Y, Z)) -> activate^#(Z) , 2: activate^#(n__first(X1, X2)) -> first^#(X1, X2)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 1: first^#(s(X), cons(Y, Z)) -> activate^#(Z) , 2: activate^#(n__first(X1, X2)) -> first^#(X1, X2)} We consider the following Problem: Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 1:{10}: subsumed --------------------- This path is subsumed by the proof of paths 1:{10}->2:{2}. * Path 1:{10}->2:{2}: YES(O(1),O(1)) ---------------------------------- We consider the following Problem: Weak DPs: {sel^#(s(X), cons(Y, Z)) -> sel^#(X, activate(Z))} Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: sel^#(s(X), cons(Y, Z)) -> sel^#(X, activate(Z)) -->_1 sel^#(s(X), cons(Y, Z)) -> sel^#(X, activate(Z)) :1 together with the congruence-graph ->1:{1} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: {1: sel^#(s(X), cons(Y, Z)) -> sel^#(X, activate(Z))} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: sel^#(s(X), cons(Y, Z)) -> sel^#(X, activate(Z))} We consider the following Problem: Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { activate(n__first(X1, X2)) -> first(X1, X2) , activate(n__from(X)) -> from(X) , activate(X) -> X , from(X) -> n__from(X) , first(X1, X2) -> n__first(X1, X2) , from(X) -> cons(X, n__from(s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))