We consider the following Problem: Strict Trs: { from(X) -> cons(X, n__from(n__s(X))) , first(0(), Z) -> nil() , first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) , sel(0(), cons(X, Z)) -> X , sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) , from(X) -> n__from(X) , s(X) -> n__s(X) , first(X1, X2) -> n__first(X1, X2) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: Arguments of following rules are not normal-forms: { first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) , sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))} All above mentioned rules can be savely removed. We consider the following Problem: Strict Trs: { from(X) -> cons(X, n__from(n__s(X))) , first(0(), Z) -> nil() , sel(0(), cons(X, Z)) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , first(X1, X2) -> n__first(X1, X2) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {first(0(), Z) -> nil()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {}, Uargs(n__s) = {}, Uargs(first) = {1, 2}, Uargs(s) = {1}, Uargs(n__first) = {}, Uargs(activate) = {}, Uargs(sel) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 1] x1 + [0] [0 0] [1] cons(x1, x2) = [1 1] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] n__from(x1) = [0 0] x1 + [0] [1 1] [0] n__s(x1) = [0 0] x1 + [0] [1 1] [0] first(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 1] [0 0] [1] 0() = [0] [0] nil() = [0] [0] s(x1) = [1 0] x1 + [0] [0 0] [1] n__first(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] activate(x1) = [1 1] x1 + [1] [0 0] [0] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { from(X) -> cons(X, n__from(n__s(X))) , sel(0(), cons(X, Z)) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , first(X1, X2) -> n__first(X1, X2) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) , activate(X) -> X} Weak Trs: {first(0(), Z) -> nil()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {first(X1, X2) -> n__first(X1, X2)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {}, Uargs(n__s) = {}, Uargs(first) = {1, 2}, Uargs(s) = {1}, Uargs(n__first) = {}, Uargs(activate) = {}, Uargs(sel) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 1] x1 + [0] [0 0] [1] cons(x1, x2) = [1 1] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] n__from(x1) = [0 0] x1 + [0] [1 1] [0] n__s(x1) = [0 0] x1 + [0] [1 1] [0] first(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 1] [0 1] [1] 0() = [0] [0] nil() = [0] [0] s(x1) = [1 0] x1 + [0] [0 0] [1] n__first(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] activate(x1) = [1 1] x1 + [1] [0 0] [0] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { from(X) -> cons(X, n__from(n__s(X))) , sel(0(), cons(X, Z)) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) , activate(X) -> X} Weak Trs: { first(X1, X2) -> n__first(X1, X2) , first(0(), Z) -> nil()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {from(X) -> cons(X, n__from(n__s(X)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {}, Uargs(n__s) = {}, Uargs(first) = {1, 2}, Uargs(s) = {1}, Uargs(n__first) = {}, Uargs(activate) = {}, Uargs(sel) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 1] x1 + [3] [0 0] [2] cons(x1, x2) = [1 1] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] n__from(x1) = [0 0] x1 + [0] [1 1] [0] n__s(x1) = [0 0] x1 + [0] [1 1] [0] first(x1, x2) = [1 0] x1 + [1 0] x2 + [3] [0 1] [0 1] [0] 0() = [0] [0] nil() = [0] [0] s(x1) = [1 1] x1 + [1] [0 0] [0] n__first(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] activate(x1) = [1 1] x1 + [1] [0 0] [3] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { sel(0(), cons(X, Z)) -> X , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) , activate(X) -> X} Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , first(X1, X2) -> n__first(X1, X2) , first(0(), Z) -> nil()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {from(X) -> n__from(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {}, Uargs(n__s) = {}, Uargs(first) = {1, 2}, Uargs(s) = {1}, Uargs(n__first) = {}, Uargs(activate) = {}, Uargs(sel) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 0] x1 + [2] [0 0] [2] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] n__from(x1) = [1 0] x1 + [0] [0 0] [0] n__s(x1) = [1 0] x1 + [0] [0 1] [0] first(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] 0() = [0] [0] nil() = [0] [0] s(x1) = [1 0] x1 + [0] [0 1] [0] n__first(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] activate(x1) = [1 0] x1 + [1] [1 0] [1] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [1 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { sel(0(), cons(X, Z)) -> X , s(X) -> n__s(X) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) , activate(X) -> X} Weak Trs: { from(X) -> n__from(X) , from(X) -> cons(X, n__from(n__s(X))) , first(X1, X2) -> n__first(X1, X2) , first(0(), Z) -> nil()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {s(X) -> n__s(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {}, Uargs(n__s) = {}, Uargs(first) = {1, 2}, Uargs(s) = {1}, Uargs(n__first) = {}, Uargs(activate) = {}, Uargs(sel) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 0] x1 + [1] [0 0] [2] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] n__from(x1) = [1 0] x1 + [0] [0 0] [0] n__s(x1) = [1 0] x1 + [0] [1 1] [0] first(x1, x2) = [1 0] x1 + [1 0] x2 + [3] [0 0] [0 0] [1] 0() = [0] [0] nil() = [0] [0] s(x1) = [1 0] x1 + [2] [1 1] [3] n__first(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] activate(x1) = [1 0] x1 + [1] [1 0] [1] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [1 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { sel(0(), cons(X, Z)) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) , activate(X) -> X} Weak Trs: { s(X) -> n__s(X) , from(X) -> n__from(X) , from(X) -> cons(X, n__from(n__s(X))) , first(X1, X2) -> n__first(X1, X2) , first(0(), Z) -> nil()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(X) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {}, Uargs(n__s) = {}, Uargs(first) = {1, 2}, Uargs(s) = {1}, Uargs(n__first) = {}, Uargs(activate) = {}, Uargs(sel) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 0] x1 + [0] [0 0] [1] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] n__from(x1) = [1 0] x1 + [0] [0 0] [0] n__s(x1) = [1 1] x1 + [0] [0 0] [0] first(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] 0() = [0] [0] nil() = [0] [0] s(x1) = [1 1] x1 + [1] [0 0] [1] n__first(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] activate(x1) = [1 0] x1 + [1] [0 1] [1] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { sel(0(), cons(X, Z)) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))} Weak Trs: { activate(X) -> X , s(X) -> n__s(X) , from(X) -> n__from(X) , from(X) -> cons(X, n__from(n__s(X))) , first(X1, X2) -> n__first(X1, X2) , first(0(), Z) -> nil()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {sel(0(), cons(X, Z)) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {}, Uargs(n__s) = {}, Uargs(first) = {1, 2}, Uargs(s) = {1}, Uargs(n__first) = {}, Uargs(activate) = {}, Uargs(sel) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: from(x1) = [1 0] x1 + [0] [0 1] [1] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 1] [0 0] [1] n__from(x1) = [1 0] x1 + [0] [0 0] [0] n__s(x1) = [1 0] x1 + [0] [1 0] [0] first(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 1] [0 1] [1] 0() = [0] [0] nil() = [0] [0] s(x1) = [1 0] x1 + [0] [1 0] [1] n__first(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [0] activate(x1) = [1 0] x1 + [0] [1 1] [0] sel(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [1 1] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))} Weak Trs: { sel(0(), cons(X, Z)) -> X , activate(X) -> X , s(X) -> n__s(X) , from(X) -> n__from(X) , from(X) -> cons(X, n__from(n__s(X))) , first(X1, X2) -> n__first(X1, X2) , first(0(), Z) -> nil()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: We consider the following Problem: Strict Trs: { activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))} Weak Trs: { sel(0(), cons(X, Z)) -> X , activate(X) -> X , s(X) -> n__s(X) , from(X) -> n__from(X) , from(X) -> cons(X, n__from(n__s(X))) , first(X1, X2) -> n__first(X1, X2) , first(0(), Z) -> nil()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The following argument positions are usable: Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {}, Uargs(n__s) = {}, Uargs(first) = {1, 2}, Uargs(s) = {1}, Uargs(n__first) = {}, Uargs(activate) = {}, Uargs(sel) = {} We have the following restricted polynomial interpretation: Interpretation Functions: [from](x1) = 3 + x1 [cons](x1, x2) = 3 + x1 [n__from](x1) = 2 + x1 [n__s](x1) = 2 + x1 [first](x1, x2) = 3 + x1 + x2 [0]() = 2 [nil]() = 0 [s](x1) = 2 + x1 [n__first](x1, x2) = 2 + x1 + x2 [activate](x1) = 1 + x1 + 2*x1^2 [sel](x1, x2) = 3*x1*x2 + 3*x2^2 Hurray, we answered YES(?,O(n^2))