We consider the following Problem:
Strict Trs:
{ from(X) -> cons(X, n__from(n__s(X)))
, first(0(), Z) -> nil()
, first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))
, sel(0(), cons(X, Z)) -> X
, sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
, from(X) -> n__from(X)
, s(X) -> n__s(X)
, first(X1, X2) -> n__first(X1, X2)
, activate(n__from(X)) -> from(activate(X))
, activate(n__s(X)) -> s(activate(X))
, activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))
, activate(X) -> X}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^2))
Proof:
Arguments of following rules are not normal-forms:
{ first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))
, sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))}
All above mentioned rules can be savely removed.
We consider the following Problem:
Strict Trs:
{ from(X) -> cons(X, n__from(n__s(X)))
, first(0(), Z) -> nil()
, sel(0(), cons(X, Z)) -> X
, from(X) -> n__from(X)
, s(X) -> n__s(X)
, first(X1, X2) -> n__first(X1, X2)
, activate(n__from(X)) -> from(activate(X))
, activate(n__s(X)) -> s(activate(X))
, activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))
, activate(X) -> X}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^2))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {first(0(), Z) -> nil()}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {},
Uargs(n__s) = {}, Uargs(first) = {1, 2}, Uargs(s) = {1},
Uargs(n__first) = {}, Uargs(activate) = {}, Uargs(sel) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
from(x1) = [1 1] x1 + [0]
[0 0] [1]
cons(x1, x2) = [1 1] x1 + [0 0] x2 + [1]
[0 0] [0 0] [1]
n__from(x1) = [0 0] x1 + [0]
[1 1] [0]
n__s(x1) = [0 0] x1 + [0]
[1 1] [0]
first(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
[0 1] [0 0] [1]
0() = [0]
[0]
nil() = [0]
[0]
s(x1) = [1 0] x1 + [0]
[0 0] [1]
n__first(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
[0 1] [0 1] [0]
activate(x1) = [1 1] x1 + [1]
[0 0] [0]
sel(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
[0 0] [0 0] [1]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ from(X) -> cons(X, n__from(n__s(X)))
, sel(0(), cons(X, Z)) -> X
, from(X) -> n__from(X)
, s(X) -> n__s(X)
, first(X1, X2) -> n__first(X1, X2)
, activate(n__from(X)) -> from(activate(X))
, activate(n__s(X)) -> s(activate(X))
, activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))
, activate(X) -> X}
Weak Trs: {first(0(), Z) -> nil()}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^2))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {first(X1, X2) -> n__first(X1, X2)}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {},
Uargs(n__s) = {}, Uargs(first) = {1, 2}, Uargs(s) = {1},
Uargs(n__first) = {}, Uargs(activate) = {}, Uargs(sel) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
from(x1) = [1 1] x1 + [0]
[0 0] [1]
cons(x1, x2) = [1 1] x1 + [0 0] x2 + [1]
[0 0] [0 0] [1]
n__from(x1) = [0 0] x1 + [0]
[1 1] [0]
n__s(x1) = [0 0] x1 + [0]
[1 1] [0]
first(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
[0 1] [0 1] [1]
0() = [0]
[0]
nil() = [0]
[0]
s(x1) = [1 0] x1 + [0]
[0 0] [1]
n__first(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
[0 1] [0 1] [0]
activate(x1) = [1 1] x1 + [1]
[0 0] [0]
sel(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
[0 0] [0 0] [1]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ from(X) -> cons(X, n__from(n__s(X)))
, sel(0(), cons(X, Z)) -> X
, from(X) -> n__from(X)
, s(X) -> n__s(X)
, activate(n__from(X)) -> from(activate(X))
, activate(n__s(X)) -> s(activate(X))
, activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))
, activate(X) -> X}
Weak Trs:
{ first(X1, X2) -> n__first(X1, X2)
, first(0(), Z) -> nil()}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^2))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {from(X) -> cons(X, n__from(n__s(X)))}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {},
Uargs(n__s) = {}, Uargs(first) = {1, 2}, Uargs(s) = {1},
Uargs(n__first) = {}, Uargs(activate) = {}, Uargs(sel) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
from(x1) = [1 1] x1 + [3]
[0 0] [2]
cons(x1, x2) = [1 1] x1 + [0 0] x2 + [1]
[0 0] [0 0] [1]
n__from(x1) = [0 0] x1 + [0]
[1 1] [0]
n__s(x1) = [0 0] x1 + [0]
[1 1] [0]
first(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
[0 1] [0 1] [0]
0() = [0]
[0]
nil() = [0]
[0]
s(x1) = [1 1] x1 + [1]
[0 0] [0]
n__first(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
[0 1] [0 1] [0]
activate(x1) = [1 1] x1 + [1]
[0 0] [3]
sel(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
[0 0] [0 0] [1]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ sel(0(), cons(X, Z)) -> X
, from(X) -> n__from(X)
, s(X) -> n__s(X)
, activate(n__from(X)) -> from(activate(X))
, activate(n__s(X)) -> s(activate(X))
, activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))
, activate(X) -> X}
Weak Trs:
{ from(X) -> cons(X, n__from(n__s(X)))
, first(X1, X2) -> n__first(X1, X2)
, first(0(), Z) -> nil()}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^2))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {from(X) -> n__from(X)}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {},
Uargs(n__s) = {}, Uargs(first) = {1, 2}, Uargs(s) = {1},
Uargs(n__first) = {}, Uargs(activate) = {}, Uargs(sel) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
from(x1) = [1 0] x1 + [2]
[0 0] [2]
cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [1]
n__from(x1) = [1 0] x1 + [0]
[0 0] [0]
n__s(x1) = [1 0] x1 + [0]
[0 1] [0]
first(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
[0 0] [0 0] [1]
0() = [0]
[0]
nil() = [0]
[0]
s(x1) = [1 0] x1 + [0]
[0 1] [0]
n__first(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
[0 0] [0 0] [0]
activate(x1) = [1 0] x1 + [1]
[1 0] [1]
sel(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
[0 0] [1 0] [1]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ sel(0(), cons(X, Z)) -> X
, s(X) -> n__s(X)
, activate(n__from(X)) -> from(activate(X))
, activate(n__s(X)) -> s(activate(X))
, activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))
, activate(X) -> X}
Weak Trs:
{ from(X) -> n__from(X)
, from(X) -> cons(X, n__from(n__s(X)))
, first(X1, X2) -> n__first(X1, X2)
, first(0(), Z) -> nil()}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^2))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {s(X) -> n__s(X)}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {},
Uargs(n__s) = {}, Uargs(first) = {1, 2}, Uargs(s) = {1},
Uargs(n__first) = {}, Uargs(activate) = {}, Uargs(sel) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
from(x1) = [1 0] x1 + [1]
[0 0] [2]
cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [1]
n__from(x1) = [1 0] x1 + [0]
[0 0] [0]
n__s(x1) = [1 0] x1 + [0]
[1 1] [0]
first(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
[0 0] [0 0] [1]
0() = [0]
[0]
nil() = [0]
[0]
s(x1) = [1 0] x1 + [2]
[1 1] [3]
n__first(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
[0 0] [0 0] [0]
activate(x1) = [1 0] x1 + [1]
[1 0] [1]
sel(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
[0 0] [1 0] [1]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ sel(0(), cons(X, Z)) -> X
, activate(n__from(X)) -> from(activate(X))
, activate(n__s(X)) -> s(activate(X))
, activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))
, activate(X) -> X}
Weak Trs:
{ s(X) -> n__s(X)
, from(X) -> n__from(X)
, from(X) -> cons(X, n__from(n__s(X)))
, first(X1, X2) -> n__first(X1, X2)
, first(0(), Z) -> nil()}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^2))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {activate(X) -> X}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {},
Uargs(n__s) = {}, Uargs(first) = {1, 2}, Uargs(s) = {1},
Uargs(n__first) = {}, Uargs(activate) = {}, Uargs(sel) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
from(x1) = [1 0] x1 + [0]
[0 0] [1]
cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [1]
n__from(x1) = [1 0] x1 + [0]
[0 0] [0]
n__s(x1) = [1 1] x1 + [0]
[0 0] [0]
first(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
[0 0] [0 0] [1]
0() = [0]
[0]
nil() = [0]
[0]
s(x1) = [1 1] x1 + [1]
[0 0] [1]
n__first(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
[0 0] [0 0] [0]
activate(x1) = [1 0] x1 + [1]
[0 1] [1]
sel(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
[0 0] [0 0] [1]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ sel(0(), cons(X, Z)) -> X
, activate(n__from(X)) -> from(activate(X))
, activate(n__s(X)) -> s(activate(X))
, activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))}
Weak Trs:
{ activate(X) -> X
, s(X) -> n__s(X)
, from(X) -> n__from(X)
, from(X) -> cons(X, n__from(n__s(X)))
, first(X1, X2) -> n__first(X1, X2)
, first(0(), Z) -> nil()}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^2))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {sel(0(), cons(X, Z)) -> X}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {},
Uargs(n__s) = {}, Uargs(first) = {1, 2}, Uargs(s) = {1},
Uargs(n__first) = {}, Uargs(activate) = {}, Uargs(sel) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
from(x1) = [1 0] x1 + [0]
[0 1] [1]
cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
[0 1] [0 0] [1]
n__from(x1) = [1 0] x1 + [0]
[0 0] [0]
n__s(x1) = [1 0] x1 + [0]
[1 0] [0]
first(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
[0 1] [0 1] [1]
0() = [0]
[0]
nil() = [0]
[0]
s(x1) = [1 0] x1 + [0]
[1 0] [1]
n__first(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
[0 0] [0 0] [0]
activate(x1) = [1 0] x1 + [0]
[1 1] [0]
sel(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
[0 0] [1 1] [0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ activate(n__from(X)) -> from(activate(X))
, activate(n__s(X)) -> s(activate(X))
, activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))}
Weak Trs:
{ sel(0(), cons(X, Z)) -> X
, activate(X) -> X
, s(X) -> n__s(X)
, from(X) -> n__from(X)
, from(X) -> cons(X, n__from(n__s(X)))
, first(X1, X2) -> n__first(X1, X2)
, first(0(), Z) -> nil()}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^2))
Proof:
We consider the following Problem:
Strict Trs:
{ activate(n__from(X)) -> from(activate(X))
, activate(n__s(X)) -> s(activate(X))
, activate(n__first(X1, X2)) -> first(activate(X1), activate(X2))}
Weak Trs:
{ sel(0(), cons(X, Z)) -> X
, activate(X) -> X
, s(X) -> n__s(X)
, from(X) -> n__from(X)
, from(X) -> cons(X, n__from(n__s(X)))
, first(X1, X2) -> n__first(X1, X2)
, first(0(), Z) -> nil()}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^2))
Proof:
The following argument positions are usable:
Uargs(from) = {1}, Uargs(cons) = {}, Uargs(n__from) = {},
Uargs(n__s) = {}, Uargs(first) = {1, 2}, Uargs(s) = {1},
Uargs(n__first) = {}, Uargs(activate) = {}, Uargs(sel) = {}
We have the following restricted polynomial interpretation:
Interpretation Functions:
[from](x1) = 3 + x1
[cons](x1, x2) = 3 + x1
[n__from](x1) = 2 + x1
[n__s](x1) = 2 + x1
[first](x1, x2) = 3 + x1 + x2
[0]() = 2
[nil]() = 0
[s](x1) = 2 + x1
[n__first](x1, x2) = 2 + x1 + x2
[activate](x1) = 1 + x1 + 2*x1^2
[sel](x1, x2) = 3*x1*x2 + 3*x2^2
Hurray, we answered YES(?,O(n^2))