We consider the following Problem: Strict Trs: { 2nd(cons(X, n__cons(Y, Z))) -> activate(Y) , from(X) -> cons(X, n__from(n__s(X))) , cons(X1, X2) -> n__cons(X1, X2) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(n__cons(X1, X2)) -> cons(activate(X1), X2) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: Arguments of following rules are not normal-forms: {2nd(cons(X, n__cons(Y, Z))) -> activate(Y)} All above mentioned rules can be savely removed. We consider the following Problem: Strict Trs: { from(X) -> cons(X, n__from(n__s(X))) , cons(X1, X2) -> n__cons(X1, X2) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(n__cons(X1, X2)) -> cons(activate(X1), X2) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {cons(X1, X2) -> n__cons(X1, X2)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(2nd) = {}, Uargs(cons) = {1}, Uargs(n__cons) = {}, Uargs(activate) = {}, Uargs(from) = {1}, Uargs(n__from) = {}, Uargs(n__s) = {}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: 2nd(x1) = [0 0] x1 + [0] [0 0] [0] cons(x1, x2) = [1 1] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] n__cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] activate(x1) = [1 0] x1 + [1] [0 0] [0] from(x1) = [1 1] x1 + [0] [0 0] [1] n__from(x1) = [1 0] x1 + [0] [0 0] [0] n__s(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [1 0] x1 + [0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) , activate(n__cons(X1, X2)) -> cons(activate(X1), X2) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(X) -> X} Weak Trs: {cons(X1, X2) -> n__cons(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {s(X) -> n__s(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(2nd) = {}, Uargs(cons) = {1}, Uargs(n__cons) = {}, Uargs(activate) = {}, Uargs(from) = {1}, Uargs(n__from) = {}, Uargs(n__s) = {}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: 2nd(x1) = [0 0] x1 + [0] [0 0] [0] cons(x1, x2) = [1 1] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] n__cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] activate(x1) = [1 0] x1 + [1] [0 0] [0] from(x1) = [1 1] x1 + [0] [0 0] [1] n__from(x1) = [1 0] x1 + [0] [0 0] [0] n__s(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [1 0] x1 + [2] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , activate(n__cons(X1, X2)) -> cons(activate(X1), X2) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(X) -> X} Weak Trs: { s(X) -> n__s(X) , cons(X1, X2) -> n__cons(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {from(X) -> cons(X, n__from(n__s(X)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(2nd) = {}, Uargs(cons) = {1}, Uargs(n__cons) = {}, Uargs(activate) = {}, Uargs(from) = {1}, Uargs(n__from) = {}, Uargs(n__s) = {}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: 2nd(x1) = [0 0] x1 + [0] [0 0] [0] cons(x1, x2) = [1 1] x1 + [0 0] x2 + [1] [0 0] [1 0] [0] n__cons(x1, x2) = [1 1] x1 + [0 0] x2 + [0] [0 0] [1 0] [0] activate(x1) = [1 1] x1 + [0] [0 0] [0] from(x1) = [1 1] x1 + [2] [0 0] [2] n__from(x1) = [0 1] x1 + [0] [1 0] [0] n__s(x1) = [1 1] x1 + [0] [0 0] [1] s(x1) = [1 1] x1 + [0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { from(X) -> n__from(X) , activate(n__cons(X1, X2)) -> cons(activate(X1), X2) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(X) -> X} Weak Trs: { from(X) -> cons(X, n__from(n__s(X))) , s(X) -> n__s(X) , cons(X1, X2) -> n__cons(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {from(X) -> n__from(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(2nd) = {}, Uargs(cons) = {1}, Uargs(n__cons) = {}, Uargs(activate) = {}, Uargs(from) = {1}, Uargs(n__from) = {}, Uargs(n__s) = {}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: 2nd(x1) = [1 0] x1 + [0] [0 1] [0] cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 1] [0 0] [1] n__cons(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] activate(x1) = [1 0] x1 + [1] [0 0] [1] from(x1) = [1 0] x1 + [2] [0 1] [1] n__from(x1) = [1 0] x1 + [0] [0 0] [0] n__s(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [1 0] x1 + [0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { activate(n__cons(X1, X2)) -> cons(activate(X1), X2) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , activate(X) -> X} Weak Trs: { from(X) -> n__from(X) , from(X) -> cons(X, n__from(n__s(X))) , s(X) -> n__s(X) , cons(X1, X2) -> n__cons(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(X) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(2nd) = {}, Uargs(cons) = {1}, Uargs(n__cons) = {}, Uargs(activate) = {}, Uargs(from) = {1}, Uargs(n__from) = {}, Uargs(n__s) = {}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: 2nd(x1) = [1 0] x1 + [0] [0 1] [0] cons(x1, x2) = [1 3] x1 + [0 0] x2 + [0] [0 0] [0 1] [0] n__cons(x1, x2) = [1 3] x1 + [0 0] x2 + [0] [0 0] [0 1] [0] activate(x1) = [1 0] x1 + [2] [0 1] [2] from(x1) = [1 3] x1 + [0] [0 0] [0] n__from(x1) = [1 3] x1 + [0] [0 0] [0] n__s(x1) = [1 3] x1 + [1] [0 0] [0] s(x1) = [1 3] x1 + [1] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { activate(n__cons(X1, X2)) -> cons(activate(X1), X2) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X))} Weak Trs: { activate(X) -> X , from(X) -> n__from(X) , from(X) -> cons(X, n__from(n__s(X))) , s(X) -> n__s(X) , cons(X1, X2) -> n__cons(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: We consider the following Problem: Strict Trs: { activate(n__cons(X1, X2)) -> cons(activate(X1), X2) , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X))} Weak Trs: { activate(X) -> X , from(X) -> n__from(X) , from(X) -> cons(X, n__from(n__s(X))) , s(X) -> n__s(X) , cons(X1, X2) -> n__cons(X1, X2)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The following argument positions are usable: Uargs(cons) = {1}, Uargs(n__cons) = {}, Uargs(activate) = {}, Uargs(from) = {1}, Uargs(n__from) = {}, Uargs(n__s) = {}, Uargs(s) = {1} We have the following restricted polynomial interpretation: Interpretation Functions: [cons](x1, x2) = 3 + x1 [n__cons](x1, x2) = 3 + x1 [activate](x1) = 1 + x1 + 2*x1^2 [from](x1) = 3 + x1 [n__from](x1) = 2 + x1 [n__s](x1) = 2 + x1 [s](x1) = 2 + x1 Hurray, we answered YES(?,O(n^2))