We consider the following Problem:

  Strict Trs:
    {  a__and(true(), X) -> mark(X)
     , a__and(false(), Y) -> false()
     , a__if(true(), X, Y) -> mark(X)
     , a__if(false(), X, Y) -> mark(Y)
     , a__add(0(), X) -> mark(X)
     , a__add(s(X), Y) -> s(add(X, Y))
     , a__first(0(), X) -> nil()
     , a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
     , a__from(X) -> cons(X, from(s(X)))
     , mark(and(X1, X2)) -> a__and(mark(X1), X2)
     , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
     , mark(add(X1, X2)) -> a__add(mark(X1), X2)
     , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
     , mark(from(X)) -> a__from(X)
     , mark(true()) -> true()
     , mark(false()) -> false()
     , mark(0()) -> 0()
     , mark(s(X)) -> s(X)
     , mark(nil()) -> nil()
     , mark(cons(X1, X2)) -> cons(X1, X2)
     , a__and(X1, X2) -> and(X1, X2)
     , a__if(X1, X2, X3) -> if(X1, X2, X3)
     , a__add(X1, X2) -> add(X1, X2)
     , a__first(X1, X2) -> first(X1, X2)
     , a__from(X) -> from(X)}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  We consider the following Problem:
  
    Strict Trs:
      {  a__and(true(), X) -> mark(X)
       , a__and(false(), Y) -> false()
       , a__if(true(), X, Y) -> mark(X)
       , a__if(false(), X, Y) -> mark(Y)
       , a__add(0(), X) -> mark(X)
       , a__add(s(X), Y) -> s(add(X, Y))
       , a__first(0(), X) -> nil()
       , a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
       , a__from(X) -> cons(X, from(s(X)))
       , mark(and(X1, X2)) -> a__and(mark(X1), X2)
       , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
       , mark(add(X1, X2)) -> a__add(mark(X1), X2)
       , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
       , mark(from(X)) -> a__from(X)
       , mark(true()) -> true()
       , mark(false()) -> false()
       , mark(0()) -> 0()
       , mark(s(X)) -> s(X)
       , mark(nil()) -> nil()
       , mark(cons(X1, X2)) -> cons(X1, X2)
       , a__and(X1, X2) -> and(X1, X2)
       , a__if(X1, X2, X3) -> if(X1, X2, X3)
       , a__add(X1, X2) -> add(X1, X2)
       , a__first(X1, X2) -> first(X1, X2)
       , a__from(X) -> from(X)}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component:
      {  a__and(false(), Y) -> false()
       , a__add(s(X), Y) -> s(add(X, Y))
       , a__first(0(), X) -> nil()
       , mark(from(X)) -> a__from(X)
       , mark(true()) -> true()
       , mark(false()) -> false()
       , mark(0()) -> 0()
       , mark(s(X)) -> s(X)
       , mark(nil()) -> nil()
       , a__and(X1, X2) -> and(X1, X2)
       , a__if(X1, X2, X3) -> if(X1, X2, X3)
       , a__add(X1, X2) -> add(X1, X2)
       , a__first(X1, X2) -> first(X1, X2)}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(a__and) = {1}, Uargs(mark) = {}, Uargs(a__if) = {1},
        Uargs(a__add) = {1}, Uargs(s) = {}, Uargs(add) = {},
        Uargs(a__first) = {1, 2}, Uargs(cons) = {}, Uargs(first) = {},
        Uargs(a__from) = {}, Uargs(from) = {}, Uargs(and) = {},
        Uargs(if) = {}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       a__and(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                        [0 0]      [0 0]      [1]
       true() = [0]
                [0]
       mark(x1) = [0 0] x1 + [1]
                  [0 0]      [1]
       false() = [0]
                 [0]
       a__if(x1, x2, x3) = [1 0] x1 + [0 0] x2 + [0 0] x3 + [1]
                           [0 0]      [0 0]      [0 0]      [1]
       a__add(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                        [0 0]      [0 0]      [1]
       0() = [0]
             [0]
       s(x1) = [0 0] x1 + [0]
               [0 0]      [1]
       add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                     [0 0]      [0 0]      [0]
       a__first(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                          [0 0]      [0 0]      [1]
       nil() = [0]
               [0]
       cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                      [0 1]      [0 0]      [1]
       first(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                       [0 0]      [0 0]      [0]
       a__from(x1) = [0 0] x1 + [0]
                     [0 0]      [0]
       from(x1) = [0 0] x1 + [0]
                  [0 0]      [0]
       and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                     [0 0]      [0 0]      [0]
       if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                        [0 0]      [0 0]      [0 0]      [0]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  a__and(true(), X) -> mark(X)
         , a__if(true(), X, Y) -> mark(X)
         , a__if(false(), X, Y) -> mark(Y)
         , a__add(0(), X) -> mark(X)
         , a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
         , a__from(X) -> cons(X, from(s(X)))
         , mark(and(X1, X2)) -> a__and(mark(X1), X2)
         , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
         , mark(add(X1, X2)) -> a__add(mark(X1), X2)
         , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
         , mark(cons(X1, X2)) -> cons(X1, X2)
         , a__from(X) -> from(X)}
      Weak Trs:
        {  a__and(false(), Y) -> false()
         , a__add(s(X), Y) -> s(add(X, Y))
         , a__first(0(), X) -> nil()
         , mark(from(X)) -> a__from(X)
         , mark(true()) -> true()
         , mark(false()) -> false()
         , mark(0()) -> 0()
         , mark(s(X)) -> s(X)
         , mark(nil()) -> nil()
         , a__and(X1, X2) -> and(X1, X2)
         , a__if(X1, X2, X3) -> if(X1, X2, X3)
         , a__add(X1, X2) -> add(X1, X2)
         , a__first(X1, X2) -> first(X1, X2)}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component: {a__from(X) -> from(X)}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(a__and) = {1}, Uargs(mark) = {}, Uargs(a__if) = {1},
          Uargs(a__add) = {1}, Uargs(s) = {}, Uargs(add) = {},
          Uargs(a__first) = {1, 2}, Uargs(cons) = {}, Uargs(first) = {},
          Uargs(a__from) = {}, Uargs(from) = {}, Uargs(and) = {},
          Uargs(if) = {}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         a__and(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                          [0 0]      [0 0]      [1]
         true() = [0]
                  [0]
         mark(x1) = [0 0] x1 + [1]
                    [0 0]      [1]
         false() = [0]
                   [0]
         a__if(x1, x2, x3) = [1 0] x1 + [0 0] x2 + [0 0] x3 + [1]
                             [1 0]      [0 0]      [0 0]      [1]
         a__add(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                          [1 0]      [0 0]      [0]
         0() = [1]
               [0]
         s(x1) = [0 0] x1 + [0]
                 [0 0]      [0]
         add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                       [0 0]      [0 0]      [0]
         a__first(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                            [0 0]      [0 0]      [1]
         nil() = [0]
                 [0]
         cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                        [0 1]      [0 0]      [1]
         first(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                         [0 0]      [0 0]      [0]
         a__from(x1) = [0 0] x1 + [1]
                       [0 0]      [0]
         from(x1) = [0 0] x1 + [0]
                    [0 0]      [0]
         and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                       [0 0]      [0 0]      [0]
         if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                          [0 0]      [0 0]      [0 0]      [0]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  a__and(true(), X) -> mark(X)
           , a__if(true(), X, Y) -> mark(X)
           , a__if(false(), X, Y) -> mark(Y)
           , a__add(0(), X) -> mark(X)
           , a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
           , a__from(X) -> cons(X, from(s(X)))
           , mark(and(X1, X2)) -> a__and(mark(X1), X2)
           , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
           , mark(add(X1, X2)) -> a__add(mark(X1), X2)
           , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
           , mark(cons(X1, X2)) -> cons(X1, X2)}
        Weak Trs:
          {  a__from(X) -> from(X)
           , a__and(false(), Y) -> false()
           , a__add(s(X), Y) -> s(add(X, Y))
           , a__first(0(), X) -> nil()
           , mark(from(X)) -> a__from(X)
           , mark(true()) -> true()
           , mark(false()) -> false()
           , mark(0()) -> 0()
           , mark(s(X)) -> s(X)
           , mark(nil()) -> nil()
           , a__and(X1, X2) -> and(X1, X2)
           , a__if(X1, X2, X3) -> if(X1, X2, X3)
           , a__add(X1, X2) -> add(X1, X2)
           , a__first(X1, X2) -> first(X1, X2)}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component:
          {  a__and(true(), X) -> mark(X)
           , a__if(true(), X, Y) -> mark(X)
           , a__if(false(), X, Y) -> mark(Y)
           , a__add(0(), X) -> mark(X)}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(a__and) = {1}, Uargs(mark) = {}, Uargs(a__if) = {1},
            Uargs(a__add) = {1}, Uargs(s) = {}, Uargs(add) = {},
            Uargs(a__first) = {1, 2}, Uargs(cons) = {}, Uargs(first) = {},
            Uargs(a__from) = {}, Uargs(from) = {}, Uargs(and) = {},
            Uargs(if) = {}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           a__and(x1, x2) = [1 3] x1 + [0 0] x2 + [1]
                            [0 0]      [0 0]      [1]
           true() = [0]
                    [0]
           mark(x1) = [0 0] x1 + [0]
                      [0 0]      [1]
           false() = [0]
                     [0]
           a__if(x1, x2, x3) = [1 3] x1 + [0 0] x2 + [0 0] x3 + [1]
                               [0 0]      [0 0]      [0 0]      [1]
           a__add(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                            [0 0]      [0 0]      [1]
           0() = [0]
                 [0]
           s(x1) = [0 0] x1 + [0]
                   [0 0]      [1]
           add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                         [0 0]      [0 0]      [0]
           a__first(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                              [0 0]      [0 0]      [1]
           nil() = [0]
                   [0]
           cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                          [0 1]      [0 0]      [1]
           first(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                           [0 0]      [0 0]      [0]
           a__from(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
           from(x1) = [0 0] x1 + [0]
                      [0 0]      [0]
           and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                         [0 0]      [0 0]      [0]
           if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                            [0 0]      [0 0]      [0 0]      [0]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
             , a__from(X) -> cons(X, from(s(X)))
             , mark(and(X1, X2)) -> a__and(mark(X1), X2)
             , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
             , mark(add(X1, X2)) -> a__add(mark(X1), X2)
             , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
             , mark(cons(X1, X2)) -> cons(X1, X2)}
          Weak Trs:
            {  a__and(true(), X) -> mark(X)
             , a__if(true(), X, Y) -> mark(X)
             , a__if(false(), X, Y) -> mark(Y)
             , a__add(0(), X) -> mark(X)
             , a__from(X) -> from(X)
             , a__and(false(), Y) -> false()
             , a__add(s(X), Y) -> s(add(X, Y))
             , a__first(0(), X) -> nil()
             , mark(from(X)) -> a__from(X)
             , mark(true()) -> true()
             , mark(false()) -> false()
             , mark(0()) -> 0()
             , mark(s(X)) -> s(X)
             , mark(nil()) -> nil()
             , a__and(X1, X2) -> and(X1, X2)
             , a__if(X1, X2, X3) -> if(X1, X2, X3)
             , a__add(X1, X2) -> add(X1, X2)
             , a__first(X1, X2) -> first(X1, X2)}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component: {mark(cons(X1, X2)) -> cons(X1, X2)}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            The following argument positions are usable:
              Uargs(a__and) = {1}, Uargs(mark) = {}, Uargs(a__if) = {1},
              Uargs(a__add) = {1}, Uargs(s) = {}, Uargs(add) = {},
              Uargs(a__first) = {1, 2}, Uargs(cons) = {}, Uargs(first) = {},
              Uargs(a__from) = {}, Uargs(from) = {}, Uargs(and) = {},
              Uargs(if) = {}
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             a__and(x1, x2) = [1 0] x1 + [0 0] x2 + [3]
                              [0 0]      [0 1]      [1]
             true() = [2]
                      [0]
             mark(x1) = [0 0] x1 + [2]
                        [0 1]      [1]
             false() = [2]
                       [0]
             a__if(x1, x2, x3) = [1 0] x1 + [0 0] x2 + [0 0] x3 + [1]
                                 [1 0]      [0 1]      [0 1]      [1]
             a__add(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                              [0 0]      [0 1]      [1]
             0() = [2]
                   [1]
             s(x1) = [0 0] x1 + [0]
                     [0 0]      [1]
             add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                           [0 0]      [0 0]      [0]
             a__first(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                [0 0]      [0 0]      [1]
             nil() = [0]
                     [0]
             cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 1]      [0 0]      [1]
             first(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
             a__from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             from(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
             and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                           [0 0]      [0 0]      [1]
             if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                              [1 0]      [0 0]      [0 0]      [0]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Strict Trs:
              {  a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
               , a__from(X) -> cons(X, from(s(X)))
               , mark(and(X1, X2)) -> a__and(mark(X1), X2)
               , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
               , mark(add(X1, X2)) -> a__add(mark(X1), X2)
               , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))}
            Weak Trs:
              {  mark(cons(X1, X2)) -> cons(X1, X2)
               , a__and(true(), X) -> mark(X)
               , a__if(true(), X, Y) -> mark(X)
               , a__if(false(), X, Y) -> mark(Y)
               , a__add(0(), X) -> mark(X)
               , a__from(X) -> from(X)
               , a__and(false(), Y) -> false()
               , a__add(s(X), Y) -> s(add(X, Y))
               , a__first(0(), X) -> nil()
               , mark(from(X)) -> a__from(X)
               , mark(true()) -> true()
               , mark(false()) -> false()
               , mark(0()) -> 0()
               , mark(s(X)) -> s(X)
               , mark(nil()) -> nil()
               , a__and(X1, X2) -> and(X1, X2)
               , a__if(X1, X2, X3) -> if(X1, X2, X3)
               , a__add(X1, X2) -> add(X1, X2)
               , a__first(X1, X2) -> first(X1, X2)}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            The weightgap principle applies, where following rules are oriented strictly:
            
            TRS Component: {a__from(X) -> cons(X, from(s(X)))}
            
            Interpretation of nonconstant growth:
            -------------------------------------
              The following argument positions are usable:
                Uargs(a__and) = {1}, Uargs(mark) = {}, Uargs(a__if) = {1},
                Uargs(a__add) = {1}, Uargs(s) = {}, Uargs(add) = {},
                Uargs(a__first) = {1, 2}, Uargs(cons) = {}, Uargs(first) = {},
                Uargs(a__from) = {}, Uargs(from) = {}, Uargs(and) = {},
                Uargs(if) = {}
              We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
              Interpretation Functions:
               a__and(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 1]      [1]
               true() = [1]
                        [0]
               mark(x1) = [0 0] x1 + [1]
                          [0 1]      [1]
               false() = [1]
                         [0]
               a__if(x1, x2, x3) = [1 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 1]      [0 1]      [1]
               a__add(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 1]      [1]
               0() = [1]
                     [0]
               s(x1) = [0 0] x1 + [0]
                       [0 0]      [1]
               add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
               a__first(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                  [0 0]      [0 0]      [1]
               nil() = [0]
                       [0]
               cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 1]      [0 0]      [1]
               first(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
               a__from(x1) = [0 0] x1 + [1]
                             [0 1]      [1]
               from(x1) = [0 0] x1 + [0]
                          [0 1]      [0]
               and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
               if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
            
            The strictly oriented rules are moved into the weak component.
            
            We consider the following Problem:
            
              Strict Trs:
                {  a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
                 , mark(and(X1, X2)) -> a__and(mark(X1), X2)
                 , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
                 , mark(add(X1, X2)) -> a__add(mark(X1), X2)
                 , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))}
              Weak Trs:
                {  a__from(X) -> cons(X, from(s(X)))
                 , mark(cons(X1, X2)) -> cons(X1, X2)
                 , a__and(true(), X) -> mark(X)
                 , a__if(true(), X, Y) -> mark(X)
                 , a__if(false(), X, Y) -> mark(Y)
                 , a__add(0(), X) -> mark(X)
                 , a__from(X) -> from(X)
                 , a__and(false(), Y) -> false()
                 , a__add(s(X), Y) -> s(add(X, Y))
                 , a__first(0(), X) -> nil()
                 , mark(from(X)) -> a__from(X)
                 , mark(true()) -> true()
                 , mark(false()) -> false()
                 , mark(0()) -> 0()
                 , mark(s(X)) -> s(X)
                 , mark(nil()) -> nil()
                 , a__and(X1, X2) -> and(X1, X2)
                 , a__if(X1, X2, X3) -> if(X1, X2, X3)
                 , a__add(X1, X2) -> add(X1, X2)
                 , a__first(X1, X2) -> first(X1, X2)}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(?,O(n^1))
            
            Proof:
              The weightgap principle applies, where following rules are oriented strictly:
              
              TRS Component: {a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))}
              
              Interpretation of nonconstant growth:
              -------------------------------------
                The following argument positions are usable:
                  Uargs(a__and) = {1}, Uargs(mark) = {}, Uargs(a__if) = {1},
                  Uargs(a__add) = {1}, Uargs(s) = {}, Uargs(add) = {},
                  Uargs(a__first) = {1, 2}, Uargs(cons) = {}, Uargs(first) = {},
                  Uargs(a__from) = {}, Uargs(from) = {}, Uargs(and) = {},
                  Uargs(if) = {}
                We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                Interpretation Functions:
                 a__and(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [1]
                 true() = [1]
                          [1]
                 mark(x1) = [0 0] x1 + [1]
                            [0 0]      [1]
                 false() = [0]
                           [1]
                 a__if(x1, x2, x3) = [1 2] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [1]
                 a__add(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [1]
                 0() = [1]
                       [0]
                 s(x1) = [0 0] x1 + [0]
                         [0 0]      [1]
                 add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                 a__first(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                    [0 0]      [0 0]      [1]
                 nil() = [0]
                         [0]
                 cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [1]
                 first(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                 a__from(x1) = [0 0] x1 + [0]
                               [0 0]      [1]
                 from(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                 and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                 if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
              
              The strictly oriented rules are moved into the weak component.
              
              We consider the following Problem:
              
                Strict Trs:
                  {  mark(and(X1, X2)) -> a__and(mark(X1), X2)
                   , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
                   , mark(add(X1, X2)) -> a__add(mark(X1), X2)
                   , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))}
                Weak Trs:
                  {  a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
                   , a__from(X) -> cons(X, from(s(X)))
                   , mark(cons(X1, X2)) -> cons(X1, X2)
                   , a__and(true(), X) -> mark(X)
                   , a__if(true(), X, Y) -> mark(X)
                   , a__if(false(), X, Y) -> mark(Y)
                   , a__add(0(), X) -> mark(X)
                   , a__from(X) -> from(X)
                   , a__and(false(), Y) -> false()
                   , a__add(s(X), Y) -> s(add(X, Y))
                   , a__first(0(), X) -> nil()
                   , mark(from(X)) -> a__from(X)
                   , mark(true()) -> true()
                   , mark(false()) -> false()
                   , mark(0()) -> 0()
                   , mark(s(X)) -> s(X)
                   , mark(nil()) -> nil()
                   , a__and(X1, X2) -> and(X1, X2)
                   , a__if(X1, X2, X3) -> if(X1, X2, X3)
                   , a__add(X1, X2) -> add(X1, X2)
                   , a__first(X1, X2) -> first(X1, X2)}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(?,O(n^1))
              
              Proof:
                The weightgap principle applies, where following rules are oriented strictly:
                
                TRS Component:
                  {mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))}
                
                Interpretation of nonconstant growth:
                -------------------------------------
                  The following argument positions are usable:
                    Uargs(a__and) = {1}, Uargs(mark) = {}, Uargs(a__if) = {1},
                    Uargs(a__add) = {1}, Uargs(s) = {}, Uargs(add) = {},
                    Uargs(a__first) = {1, 2}, Uargs(cons) = {}, Uargs(first) = {},
                    Uargs(a__from) = {}, Uargs(from) = {}, Uargs(and) = {},
                    Uargs(if) = {}
                  We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                  Interpretation Functions:
                   a__and(x1, x2) = [1 0] x1 + [0 1] x2 + [1]
                                    [0 1]      [0 1]      [1]
                   true() = [0]
                            [0]
                   mark(x1) = [0 1] x1 + [0]
                              [0 1]      [0]
                   false() = [0]
                             [0]
                   a__if(x1, x2, x3) = [1 0] x1 + [0 1] x2 + [0 1] x3 + [1]
                                       [0 1]      [0 1]      [0 1]      [1]
                   a__add(x1, x2) = [1 0] x1 + [0 1] x2 + [1]
                                    [0 1]      [0 1]      [1]
                   0() = [0]
                         [0]
                   s(x1) = [1 0] x1 + [0]
                           [1 0]      [0]
                   add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 1]      [0 1]      [0]
                   a__first(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                      [0 1]      [0 1]      [2]
                   nil() = [0]
                           [0]
                   cons(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                                  [0 0]      [1 0]      [0]
                   first(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                   [0 1]      [0 1]      [2]
                   a__from(x1) = [1 0] x1 + [0]
                                 [1 0]      [0]
                   from(x1) = [1 0] x1 + [0]
                              [1 0]      [0]
                   and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 1]      [0 1]      [0]
                   if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                    [0 1]      [0 1]      [0 1]      [0]
                
                The strictly oriented rules are moved into the weak component.
                
                We consider the following Problem:
                
                  Strict Trs:
                    {  mark(and(X1, X2)) -> a__and(mark(X1), X2)
                     , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
                     , mark(add(X1, X2)) -> a__add(mark(X1), X2)}
                  Weak Trs:
                    {  mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
                     , a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
                     , a__from(X) -> cons(X, from(s(X)))
                     , mark(cons(X1, X2)) -> cons(X1, X2)
                     , a__and(true(), X) -> mark(X)
                     , a__if(true(), X, Y) -> mark(X)
                     , a__if(false(), X, Y) -> mark(Y)
                     , a__add(0(), X) -> mark(X)
                     , a__from(X) -> from(X)
                     , a__and(false(), Y) -> false()
                     , a__add(s(X), Y) -> s(add(X, Y))
                     , a__first(0(), X) -> nil()
                     , mark(from(X)) -> a__from(X)
                     , mark(true()) -> true()
                     , mark(false()) -> false()
                     , mark(0()) -> 0()
                     , mark(s(X)) -> s(X)
                     , mark(nil()) -> nil()
                     , a__and(X1, X2) -> and(X1, X2)
                     , a__if(X1, X2, X3) -> if(X1, X2, X3)
                     , a__add(X1, X2) -> add(X1, X2)
                     , a__first(X1, X2) -> first(X1, X2)}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(?,O(n^1))
                
                Proof:
                  The weightgap principle applies, where following rules are oriented strictly:
                  
                  TRS Component: {mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)}
                  
                  Interpretation of nonconstant growth:
                  -------------------------------------
                    The following argument positions are usable:
                      Uargs(a__and) = {1}, Uargs(mark) = {}, Uargs(a__if) = {1},
                      Uargs(a__add) = {1}, Uargs(s) = {}, Uargs(add) = {},
                      Uargs(a__first) = {1, 2}, Uargs(cons) = {}, Uargs(first) = {},
                      Uargs(a__from) = {}, Uargs(from) = {}, Uargs(and) = {},
                      Uargs(if) = {}
                    We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                    Interpretation Functions:
                     a__and(x1, x2) = [1 0] x1 + [0 1] x2 + [0]
                                      [0 1]      [0 1]      [1]
                     true() = [2]
                              [2]
                     mark(x1) = [0 1] x1 + [1]
                                [0 1]      [0]
                     false() = [1]
                               [0]
                     a__if(x1, x2, x3) = [1 0] x1 + [0 1] x2 + [0 1] x3 + [0]
                                         [0 1]      [0 1]      [0 1]      [2]
                     a__add(x1, x2) = [1 0] x1 + [0 1] x2 + [0]
                                      [0 1]      [0 1]      [1]
                     0() = [2]
                           [2]
                     s(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                     add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 1]      [0 1]      [0]
                     a__first(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                                        [0 1]      [0 1]      [3]
                     nil() = [0]
                             [0]
                     cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                     first(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 1]      [0 1]      [3]
                     a__from(x1) = [0 0] x1 + [0]
                                   [0 0]      [0]
                     from(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                     and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 1]      [0 1]      [0]
                     if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                      [0 1]      [0 1]      [0 1]      [2]
                  
                  The strictly oriented rules are moved into the weak component.
                  
                  We consider the following Problem:
                  
                    Strict Trs:
                      {  mark(and(X1, X2)) -> a__and(mark(X1), X2)
                       , mark(add(X1, X2)) -> a__add(mark(X1), X2)}
                    Weak Trs:
                      {  mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
                       , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
                       , a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
                       , a__from(X) -> cons(X, from(s(X)))
                       , mark(cons(X1, X2)) -> cons(X1, X2)
                       , a__and(true(), X) -> mark(X)
                       , a__if(true(), X, Y) -> mark(X)
                       , a__if(false(), X, Y) -> mark(Y)
                       , a__add(0(), X) -> mark(X)
                       , a__from(X) -> from(X)
                       , a__and(false(), Y) -> false()
                       , a__add(s(X), Y) -> s(add(X, Y))
                       , a__first(0(), X) -> nil()
                       , mark(from(X)) -> a__from(X)
                       , mark(true()) -> true()
                       , mark(false()) -> false()
                       , mark(0()) -> 0()
                       , mark(s(X)) -> s(X)
                       , mark(nil()) -> nil()
                       , a__and(X1, X2) -> and(X1, X2)
                       , a__if(X1, X2, X3) -> if(X1, X2, X3)
                       , a__add(X1, X2) -> add(X1, X2)
                       , a__first(X1, X2) -> first(X1, X2)}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(?,O(n^1))
                  
                  Proof:
                    The weightgap principle applies, where following rules are oriented strictly:
                    
                    TRS Component: {mark(add(X1, X2)) -> a__add(mark(X1), X2)}
                    
                    Interpretation of nonconstant growth:
                    -------------------------------------
                      The following argument positions are usable:
                        Uargs(a__and) = {1}, Uargs(mark) = {}, Uargs(a__if) = {1},
                        Uargs(a__add) = {1}, Uargs(s) = {}, Uargs(add) = {},
                        Uargs(a__first) = {1, 2}, Uargs(cons) = {}, Uargs(first) = {},
                        Uargs(a__from) = {}, Uargs(from) = {}, Uargs(and) = {},
                        Uargs(if) = {}
                      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                      Interpretation Functions:
                       a__and(x1, x2) = [1 0] x1 + [0 1] x2 + [1]
                                        [0 1]      [0 1]      [1]
                       true() = [0]
                                [0]
                       mark(x1) = [0 1] x1 + [0]
                                  [0 1]      [0]
                       false() = [0]
                                 [0]
                       a__if(x1, x2, x3) = [1 0] x1 + [0 1] x2 + [0 1] x3 + [0]
                                           [0 1]      [0 1]      [0 1]      [0]
                       a__add(x1, x2) = [1 0] x1 + [0 1] x2 + [1]
                                        [0 1]      [0 1]      [2]
                       0() = [0]
                             [0]
                       s(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                       add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 1]      [0 1]      [2]
                       a__first(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                          [0 1]      [0 1]      [0]
                       nil() = [0]
                               [0]
                       cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                      [0 0]      [0 0]      [0]
                       first(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                       [0 1]      [0 1]      [0]
                       a__from(x1) = [0 0] x1 + [0]
                                     [0 0]      [0]
                       from(x1) = [0 0] x1 + [0]
                                  [0 0]      [0]
                       and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 1]      [0 1]      [0]
                       if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                        [0 1]      [0 1]      [0 1]      [0]
                    
                    The strictly oriented rules are moved into the weak component.
                    
                    We consider the following Problem:
                    
                      Strict Trs: {mark(and(X1, X2)) -> a__and(mark(X1), X2)}
                      Weak Trs:
                        {  mark(add(X1, X2)) -> a__add(mark(X1), X2)
                         , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
                         , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
                         , a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
                         , a__from(X) -> cons(X, from(s(X)))
                         , mark(cons(X1, X2)) -> cons(X1, X2)
                         , a__and(true(), X) -> mark(X)
                         , a__if(true(), X, Y) -> mark(X)
                         , a__if(false(), X, Y) -> mark(Y)
                         , a__add(0(), X) -> mark(X)
                         , a__from(X) -> from(X)
                         , a__and(false(), Y) -> false()
                         , a__add(s(X), Y) -> s(add(X, Y))
                         , a__first(0(), X) -> nil()
                         , mark(from(X)) -> a__from(X)
                         , mark(true()) -> true()
                         , mark(false()) -> false()
                         , mark(0()) -> 0()
                         , mark(s(X)) -> s(X)
                         , mark(nil()) -> nil()
                         , a__and(X1, X2) -> and(X1, X2)
                         , a__if(X1, X2, X3) -> if(X1, X2, X3)
                         , a__add(X1, X2) -> add(X1, X2)
                         , a__first(X1, X2) -> first(X1, X2)}
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(?,O(n^1))
                    
                    Proof:
                      The weightgap principle applies, where following rules are oriented strictly:
                      
                      TRS Component: {mark(and(X1, X2)) -> a__and(mark(X1), X2)}
                      
                      Interpretation of nonconstant growth:
                      -------------------------------------
                        The following argument positions are usable:
                          Uargs(a__and) = {1}, Uargs(mark) = {}, Uargs(a__if) = {1},
                          Uargs(a__add) = {1}, Uargs(s) = {}, Uargs(add) = {},
                          Uargs(a__first) = {1, 2}, Uargs(cons) = {}, Uargs(first) = {},
                          Uargs(a__from) = {}, Uargs(from) = {}, Uargs(and) = {},
                          Uargs(if) = {}
                        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                        Interpretation Functions:
                         a__and(x1, x2) = [1 0] x1 + [0 1] x2 + [1]
                                          [0 1]      [0 1]      [2]
                         true() = [0]
                                  [0]
                         mark(x1) = [0 1] x1 + [0]
                                    [0 1]      [0]
                         false() = [0]
                                   [0]
                         a__if(x1, x2, x3) = [1 0] x1 + [0 1] x2 + [0 1] x3 + [0]
                                             [0 1]      [0 1]      [0 1]      [0]
                         a__add(x1, x2) = [1 0] x1 + [0 1] x2 + [0]
                                          [0 1]      [0 1]      [0]
                         0() = [0]
                               [0]
                         s(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                         add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                       [0 1]      [0 1]      [0]
                         a__first(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                            [0 1]      [0 1]      [0]
                         nil() = [0]
                                 [0]
                         cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                        [0 0]      [0 0]      [0]
                         first(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                         [0 1]      [0 1]      [0]
                         a__from(x1) = [0 0] x1 + [0]
                                       [0 0]      [0]
                         from(x1) = [0 0] x1 + [0]
                                    [0 0]      [0]
                         and(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                       [0 1]      [0 1]      [2]
                         if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                          [0 1]      [0 1]      [0 1]      [0]
                      
                      The strictly oriented rules are moved into the weak component.
                      
                      We consider the following Problem:
                      
                        Weak Trs:
                          {  mark(and(X1, X2)) -> a__and(mark(X1), X2)
                           , mark(add(X1, X2)) -> a__add(mark(X1), X2)
                           , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
                           , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
                           , a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
                           , a__from(X) -> cons(X, from(s(X)))
                           , mark(cons(X1, X2)) -> cons(X1, X2)
                           , a__and(true(), X) -> mark(X)
                           , a__if(true(), X, Y) -> mark(X)
                           , a__if(false(), X, Y) -> mark(Y)
                           , a__add(0(), X) -> mark(X)
                           , a__from(X) -> from(X)
                           , a__and(false(), Y) -> false()
                           , a__add(s(X), Y) -> s(add(X, Y))
                           , a__first(0(), X) -> nil()
                           , mark(from(X)) -> a__from(X)
                           , mark(true()) -> true()
                           , mark(false()) -> false()
                           , mark(0()) -> 0()
                           , mark(s(X)) -> s(X)
                           , mark(nil()) -> nil()
                           , a__and(X1, X2) -> and(X1, X2)
                           , a__if(X1, X2, X3) -> if(X1, X2, X3)
                           , a__add(X1, X2) -> add(X1, X2)
                           , a__first(X1, X2) -> first(X1, X2)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(O(1),O(1))
                      
                      Proof:
                        We consider the following Problem:
                        
                          Weak Trs:
                            {  mark(and(X1, X2)) -> a__and(mark(X1), X2)
                             , mark(add(X1, X2)) -> a__add(mark(X1), X2)
                             , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
                             , mark(first(X1, X2)) -> a__first(mark(X1), mark(X2))
                             , a__first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z))
                             , a__from(X) -> cons(X, from(s(X)))
                             , mark(cons(X1, X2)) -> cons(X1, X2)
                             , a__and(true(), X) -> mark(X)
                             , a__if(true(), X, Y) -> mark(X)
                             , a__if(false(), X, Y) -> mark(Y)
                             , a__add(0(), X) -> mark(X)
                             , a__from(X) -> from(X)
                             , a__and(false(), Y) -> false()
                             , a__add(s(X), Y) -> s(add(X, Y))
                             , a__first(0(), X) -> nil()
                             , mark(from(X)) -> a__from(X)
                             , mark(true()) -> true()
                             , mark(false()) -> false()
                             , mark(0()) -> 0()
                             , mark(s(X)) -> s(X)
                             , mark(nil()) -> nil()
                             , a__and(X1, X2) -> and(X1, X2)
                             , a__if(X1, X2, X3) -> if(X1, X2, X3)
                             , a__add(X1, X2) -> add(X1, X2)
                             , a__first(X1, X2) -> first(X1, X2)}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(O(1),O(1))
                        
                        Proof:
                          Empty rules are trivially bounded

Hurray, we answered YES(?,O(n^1))