(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__and(true, X) → mark(X)
a__and(false, Y) → false
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(add(X, Y))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
a__from(X) → cons(X, from(s(X)))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(add(X1, X2)) → a__add(mark(X1), X2)
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(from(X)) → a__from(X)
mark(true) → true
mark(false) → false
mark(0) → 0
mark(s(X)) → s(X)
mark(nil) → nil
mark(cons(X1, X2)) → cons(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
a__add(X1, X2) → add(X1, X2)
a__first(X1, X2) → first(X1, X2)
a__from(X) → from(X)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__and(true, z0) → mark(z0)
a__and(false, z0) → false
a__and(z0, z1) → and(z0, z1)
a__if(true, z0, z1) → mark(z0)
a__if(false, z0, z1) → mark(z1)
a__if(z0, z1, z2) → if(z0, z1, z2)
a__add(0, z0) → mark(z0)
a__add(s(z0), z1) → s(add(z0, z1))
a__add(z0, z1) → add(z0, z1)
a__first(0, z0) → nil
a__first(s(z0), cons(z1, z2)) → cons(z1, first(z0, z2))
a__first(z0, z1) → first(z0, z1)
a__from(z0) → cons(z0, from(s(z0)))
a__from(z0) → from(z0)
mark(and(z0, z1)) → a__and(mark(z0), z1)
mark(if(z0, z1, z2)) → a__if(mark(z0), z1, z2)
mark(add(z0, z1)) → a__add(mark(z0), z1)
mark(first(z0, z1)) → a__first(mark(z0), mark(z1))
mark(from(z0)) → a__from(z0)
mark(true) → true
mark(false) → false
mark(0) → 0
mark(s(z0)) → s(z0)
mark(nil) → nil
mark(cons(z0, z1)) → cons(z0, z1)
Tuples:
A__AND(true, z0) → c(MARK(z0))
A__IF(true, z0, z1) → c3(MARK(z0))
A__IF(false, z0, z1) → c4(MARK(z1))
A__ADD(0, z0) → c6(MARK(z0))
MARK(and(z0, z1)) → c14(A__AND(mark(z0), z1), MARK(z0))
MARK(if(z0, z1, z2)) → c15(A__IF(mark(z0), z1, z2), MARK(z0))
MARK(add(z0, z1)) → c16(A__ADD(mark(z0), z1), MARK(z0))
MARK(first(z0, z1)) → c17(A__FIRST(mark(z0), mark(z1)), MARK(z0), MARK(z1))
MARK(from(z0)) → c18(A__FROM(z0))
S tuples:
A__AND(true, z0) → c(MARK(z0))
A__IF(true, z0, z1) → c3(MARK(z0))
A__IF(false, z0, z1) → c4(MARK(z1))
A__ADD(0, z0) → c6(MARK(z0))
MARK(and(z0, z1)) → c14(A__AND(mark(z0), z1), MARK(z0))
MARK(if(z0, z1, z2)) → c15(A__IF(mark(z0), z1, z2), MARK(z0))
MARK(add(z0, z1)) → c16(A__ADD(mark(z0), z1), MARK(z0))
MARK(first(z0, z1)) → c17(A__FIRST(mark(z0), mark(z1)), MARK(z0), MARK(z1))
MARK(from(z0)) → c18(A__FROM(z0))
K tuples:none
Defined Rule Symbols:
a__and, a__if, a__add, a__first, a__from, mark
Defined Pair Symbols:
A__AND, A__IF, A__ADD, MARK
Compound Symbols:
c, c3, c4, c6, c14, c15, c16, c17, c18
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
MARK(from(z0)) → c18(A__FROM(z0))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__and(true, z0) → mark(z0)
a__and(false, z0) → false
a__and(z0, z1) → and(z0, z1)
a__if(true, z0, z1) → mark(z0)
a__if(false, z0, z1) → mark(z1)
a__if(z0, z1, z2) → if(z0, z1, z2)
a__add(0, z0) → mark(z0)
a__add(s(z0), z1) → s(add(z0, z1))
a__add(z0, z1) → add(z0, z1)
a__first(0, z0) → nil
a__first(s(z0), cons(z1, z2)) → cons(z1, first(z0, z2))
a__first(z0, z1) → first(z0, z1)
a__from(z0) → cons(z0, from(s(z0)))
a__from(z0) → from(z0)
mark(and(z0, z1)) → a__and(mark(z0), z1)
mark(if(z0, z1, z2)) → a__if(mark(z0), z1, z2)
mark(add(z0, z1)) → a__add(mark(z0), z1)
mark(first(z0, z1)) → a__first(mark(z0), mark(z1))
mark(from(z0)) → a__from(z0)
mark(true) → true
mark(false) → false
mark(0) → 0
mark(s(z0)) → s(z0)
mark(nil) → nil
mark(cons(z0, z1)) → cons(z0, z1)
Tuples:
A__AND(true, z0) → c(MARK(z0))
A__IF(true, z0, z1) → c3(MARK(z0))
A__IF(false, z0, z1) → c4(MARK(z1))
A__ADD(0, z0) → c6(MARK(z0))
MARK(and(z0, z1)) → c14(A__AND(mark(z0), z1), MARK(z0))
MARK(if(z0, z1, z2)) → c15(A__IF(mark(z0), z1, z2), MARK(z0))
MARK(add(z0, z1)) → c16(A__ADD(mark(z0), z1), MARK(z0))
MARK(first(z0, z1)) → c17(A__FIRST(mark(z0), mark(z1)), MARK(z0), MARK(z1))
S tuples:
A__AND(true, z0) → c(MARK(z0))
A__IF(true, z0, z1) → c3(MARK(z0))
A__IF(false, z0, z1) → c4(MARK(z1))
A__ADD(0, z0) → c6(MARK(z0))
MARK(and(z0, z1)) → c14(A__AND(mark(z0), z1), MARK(z0))
MARK(if(z0, z1, z2)) → c15(A__IF(mark(z0), z1, z2), MARK(z0))
MARK(add(z0, z1)) → c16(A__ADD(mark(z0), z1), MARK(z0))
MARK(first(z0, z1)) → c17(A__FIRST(mark(z0), mark(z1)), MARK(z0), MARK(z1))
K tuples:none
Defined Rule Symbols:
a__and, a__if, a__add, a__first, a__from, mark
Defined Pair Symbols:
A__AND, A__IF, A__ADD, MARK
Compound Symbols:
c, c3, c4, c6, c14, c15, c16, c17
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__and(true, z0) → mark(z0)
a__and(false, z0) → false
a__and(z0, z1) → and(z0, z1)
a__if(true, z0, z1) → mark(z0)
a__if(false, z0, z1) → mark(z1)
a__if(z0, z1, z2) → if(z0, z1, z2)
a__add(0, z0) → mark(z0)
a__add(s(z0), z1) → s(add(z0, z1))
a__add(z0, z1) → add(z0, z1)
a__first(0, z0) → nil
a__first(s(z0), cons(z1, z2)) → cons(z1, first(z0, z2))
a__first(z0, z1) → first(z0, z1)
a__from(z0) → cons(z0, from(s(z0)))
a__from(z0) → from(z0)
mark(and(z0, z1)) → a__and(mark(z0), z1)
mark(if(z0, z1, z2)) → a__if(mark(z0), z1, z2)
mark(add(z0, z1)) → a__add(mark(z0), z1)
mark(first(z0, z1)) → a__first(mark(z0), mark(z1))
mark(from(z0)) → a__from(z0)
mark(true) → true
mark(false) → false
mark(0) → 0
mark(s(z0)) → s(z0)
mark(nil) → nil
mark(cons(z0, z1)) → cons(z0, z1)
Tuples:
A__AND(true, z0) → c(MARK(z0))
A__IF(true, z0, z1) → c3(MARK(z0))
A__IF(false, z0, z1) → c4(MARK(z1))
A__ADD(0, z0) → c6(MARK(z0))
MARK(and(z0, z1)) → c14(A__AND(mark(z0), z1), MARK(z0))
MARK(if(z0, z1, z2)) → c15(A__IF(mark(z0), z1, z2), MARK(z0))
MARK(add(z0, z1)) → c16(A__ADD(mark(z0), z1), MARK(z0))
MARK(first(z0, z1)) → c17(MARK(z0), MARK(z1))
S tuples:
A__AND(true, z0) → c(MARK(z0))
A__IF(true, z0, z1) → c3(MARK(z0))
A__IF(false, z0, z1) → c4(MARK(z1))
A__ADD(0, z0) → c6(MARK(z0))
MARK(and(z0, z1)) → c14(A__AND(mark(z0), z1), MARK(z0))
MARK(if(z0, z1, z2)) → c15(A__IF(mark(z0), z1, z2), MARK(z0))
MARK(add(z0, z1)) → c16(A__ADD(mark(z0), z1), MARK(z0))
MARK(first(z0, z1)) → c17(MARK(z0), MARK(z1))
K tuples:none
Defined Rule Symbols:
a__and, a__if, a__add, a__first, a__from, mark
Defined Pair Symbols:
A__AND, A__IF, A__ADD, MARK
Compound Symbols:
c, c3, c4, c6, c14, c15, c16, c17
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
A__AND(true, z0) → c(MARK(z0))
MARK(first(z0, z1)) → c17(MARK(z0), MARK(z1))
We considered the (Usable) Rules:
mark(and(z0, z1)) → a__and(mark(z0), z1)
mark(if(z0, z1, z2)) → a__if(mark(z0), z1, z2)
mark(add(z0, z1)) → a__add(mark(z0), z1)
mark(first(z0, z1)) → a__first(mark(z0), mark(z1))
mark(from(z0)) → a__from(z0)
mark(true) → true
mark(false) → false
mark(0) → 0
mark(s(z0)) → s(z0)
mark(nil) → nil
mark(cons(z0, z1)) → cons(z0, z1)
a__and(true, z0) → mark(z0)
a__and(false, z0) → false
a__and(z0, z1) → and(z0, z1)
a__if(true, z0, z1) → mark(z0)
a__if(false, z0, z1) → mark(z1)
a__if(z0, z1, z2) → if(z0, z1, z2)
a__add(0, z0) → mark(z0)
a__add(s(z0), z1) → s(add(z0, z1))
a__add(z0, z1) → add(z0, z1)
a__from(z0) → cons(z0, from(s(z0)))
a__from(z0) → from(z0)
a__first(0, z0) → nil
a__first(s(z0), cons(z1, z2)) → cons(z1, first(z0, z2))
a__first(z0, z1) → first(z0, z1)
And the Tuples:
A__AND(true, z0) → c(MARK(z0))
A__IF(true, z0, z1) → c3(MARK(z0))
A__IF(false, z0, z1) → c4(MARK(z1))
A__ADD(0, z0) → c6(MARK(z0))
MARK(and(z0, z1)) → c14(A__AND(mark(z0), z1), MARK(z0))
MARK(if(z0, z1, z2)) → c15(A__IF(mark(z0), z1, z2), MARK(z0))
MARK(add(z0, z1)) → c16(A__ADD(mark(z0), z1), MARK(z0))
MARK(first(z0, z1)) → c17(MARK(z0), MARK(z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(A__ADD(x1, x2)) = [4]x2
POL(A__AND(x1, x2)) = [4] + [4]x2
POL(A__IF(x1, x2, x3)) = [4]x2 + [4]x3
POL(MARK(x1)) = [4]x1
POL(a__add(x1, x2)) = [3] + [3]x2
POL(a__and(x1, x2)) = [5] + [5]x1 + [3]x2
POL(a__first(x1, x2)) = [3] + [3]x1
POL(a__from(x1)) = [2] + [5]x1
POL(a__if(x1, x2, x3)) = [3] + [3]x1 + [2]x2 + [5]x3
POL(add(x1, x2)) = x1 + x2
POL(and(x1, x2)) = [1] + x1 + x2
POL(c(x1)) = x1
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1, x2)) = x1 + x2
POL(c16(x1, x2)) = x1 + x2
POL(c17(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c6(x1)) = x1
POL(cons(x1, x2)) = [3]
POL(false) = 0
POL(first(x1, x2)) = [5] + x1 + x2
POL(from(x1)) = [3]
POL(if(x1, x2, x3)) = x1 + x2 + x3
POL(mark(x1)) = x1
POL(nil) = [5]
POL(s(x1)) = [3]
POL(true) = 0
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__and(true, z0) → mark(z0)
a__and(false, z0) → false
a__and(z0, z1) → and(z0, z1)
a__if(true, z0, z1) → mark(z0)
a__if(false, z0, z1) → mark(z1)
a__if(z0, z1, z2) → if(z0, z1, z2)
a__add(0, z0) → mark(z0)
a__add(s(z0), z1) → s(add(z0, z1))
a__add(z0, z1) → add(z0, z1)
a__first(0, z0) → nil
a__first(s(z0), cons(z1, z2)) → cons(z1, first(z0, z2))
a__first(z0, z1) → first(z0, z1)
a__from(z0) → cons(z0, from(s(z0)))
a__from(z0) → from(z0)
mark(and(z0, z1)) → a__and(mark(z0), z1)
mark(if(z0, z1, z2)) → a__if(mark(z0), z1, z2)
mark(add(z0, z1)) → a__add(mark(z0), z1)
mark(first(z0, z1)) → a__first(mark(z0), mark(z1))
mark(from(z0)) → a__from(z0)
mark(true) → true
mark(false) → false
mark(0) → 0
mark(s(z0)) → s(z0)
mark(nil) → nil
mark(cons(z0, z1)) → cons(z0, z1)
Tuples:
A__AND(true, z0) → c(MARK(z0))
A__IF(true, z0, z1) → c3(MARK(z0))
A__IF(false, z0, z1) → c4(MARK(z1))
A__ADD(0, z0) → c6(MARK(z0))
MARK(and(z0, z1)) → c14(A__AND(mark(z0), z1), MARK(z0))
MARK(if(z0, z1, z2)) → c15(A__IF(mark(z0), z1, z2), MARK(z0))
MARK(add(z0, z1)) → c16(A__ADD(mark(z0), z1), MARK(z0))
MARK(first(z0, z1)) → c17(MARK(z0), MARK(z1))
S tuples:
A__IF(true, z0, z1) → c3(MARK(z0))
A__IF(false, z0, z1) → c4(MARK(z1))
A__ADD(0, z0) → c6(MARK(z0))
MARK(and(z0, z1)) → c14(A__AND(mark(z0), z1), MARK(z0))
MARK(if(z0, z1, z2)) → c15(A__IF(mark(z0), z1, z2), MARK(z0))
MARK(add(z0, z1)) → c16(A__ADD(mark(z0), z1), MARK(z0))
K tuples:
A__AND(true, z0) → c(MARK(z0))
MARK(first(z0, z1)) → c17(MARK(z0), MARK(z1))
Defined Rule Symbols:
a__and, a__if, a__add, a__first, a__from, mark
Defined Pair Symbols:
A__AND, A__IF, A__ADD, MARK
Compound Symbols:
c, c3, c4, c6, c14, c15, c16, c17
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
A__IF(true, z0, z1) → c3(MARK(z0))
A__IF(false, z0, z1) → c4(MARK(z1))
MARK(and(z0, z1)) → c14(A__AND(mark(z0), z1), MARK(z0))
MARK(if(z0, z1, z2)) → c15(A__IF(mark(z0), z1, z2), MARK(z0))
We considered the (Usable) Rules:
mark(and(z0, z1)) → a__and(mark(z0), z1)
mark(if(z0, z1, z2)) → a__if(mark(z0), z1, z2)
mark(add(z0, z1)) → a__add(mark(z0), z1)
mark(first(z0, z1)) → a__first(mark(z0), mark(z1))
mark(from(z0)) → a__from(z0)
mark(true) → true
mark(false) → false
mark(0) → 0
mark(s(z0)) → s(z0)
mark(nil) → nil
mark(cons(z0, z1)) → cons(z0, z1)
a__and(true, z0) → mark(z0)
a__and(false, z0) → false
a__and(z0, z1) → and(z0, z1)
a__if(true, z0, z1) → mark(z0)
a__if(false, z0, z1) → mark(z1)
a__if(z0, z1, z2) → if(z0, z1, z2)
a__add(0, z0) → mark(z0)
a__add(s(z0), z1) → s(add(z0, z1))
a__add(z0, z1) → add(z0, z1)
a__from(z0) → cons(z0, from(s(z0)))
a__from(z0) → from(z0)
a__first(0, z0) → nil
a__first(s(z0), cons(z1, z2)) → cons(z1, first(z0, z2))
a__first(z0, z1) → first(z0, z1)
And the Tuples:
A__AND(true, z0) → c(MARK(z0))
A__IF(true, z0, z1) → c3(MARK(z0))
A__IF(false, z0, z1) → c4(MARK(z1))
A__ADD(0, z0) → c6(MARK(z0))
MARK(and(z0, z1)) → c14(A__AND(mark(z0), z1), MARK(z0))
MARK(if(z0, z1, z2)) → c15(A__IF(mark(z0), z1, z2), MARK(z0))
MARK(add(z0, z1)) → c16(A__ADD(mark(z0), z1), MARK(z0))
MARK(first(z0, z1)) → c17(MARK(z0), MARK(z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(A__ADD(x1, x2)) = [4]x2
POL(A__AND(x1, x2)) = [4]x2
POL(A__IF(x1, x2, x3)) = [2] + [4]x2 + [4]x3
POL(MARK(x1)) = [4]x1
POL(a__add(x1, x2)) = [5] + [5]x2
POL(a__and(x1, x2)) = [3] + [5]x1 + [2]x2
POL(a__first(x1, x2)) = [3] + [3]x1 + x2
POL(a__from(x1)) = [3] + [3]x1
POL(a__if(x1, x2, x3)) = [3] + [3]x1 + [4]x2 + [3]x3
POL(add(x1, x2)) = x1 + x2
POL(and(x1, x2)) = [4] + x1 + x2
POL(c(x1)) = x1
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1, x2)) = x1 + x2
POL(c16(x1, x2)) = x1 + x2
POL(c17(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c6(x1)) = x1
POL(cons(x1, x2)) = [3]
POL(false) = 0
POL(first(x1, x2)) = [1] + x1 + x2
POL(from(x1)) = [3]
POL(if(x1, x2, x3)) = [4] + x1 + x2 + x3
POL(mark(x1)) = [3]x1
POL(nil) = [3]
POL(s(x1)) = [3]
POL(true) = 0
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__and(true, z0) → mark(z0)
a__and(false, z0) → false
a__and(z0, z1) → and(z0, z1)
a__if(true, z0, z1) → mark(z0)
a__if(false, z0, z1) → mark(z1)
a__if(z0, z1, z2) → if(z0, z1, z2)
a__add(0, z0) → mark(z0)
a__add(s(z0), z1) → s(add(z0, z1))
a__add(z0, z1) → add(z0, z1)
a__first(0, z0) → nil
a__first(s(z0), cons(z1, z2)) → cons(z1, first(z0, z2))
a__first(z0, z1) → first(z0, z1)
a__from(z0) → cons(z0, from(s(z0)))
a__from(z0) → from(z0)
mark(and(z0, z1)) → a__and(mark(z0), z1)
mark(if(z0, z1, z2)) → a__if(mark(z0), z1, z2)
mark(add(z0, z1)) → a__add(mark(z0), z1)
mark(first(z0, z1)) → a__first(mark(z0), mark(z1))
mark(from(z0)) → a__from(z0)
mark(true) → true
mark(false) → false
mark(0) → 0
mark(s(z0)) → s(z0)
mark(nil) → nil
mark(cons(z0, z1)) → cons(z0, z1)
Tuples:
A__AND(true, z0) → c(MARK(z0))
A__IF(true, z0, z1) → c3(MARK(z0))
A__IF(false, z0, z1) → c4(MARK(z1))
A__ADD(0, z0) → c6(MARK(z0))
MARK(and(z0, z1)) → c14(A__AND(mark(z0), z1), MARK(z0))
MARK(if(z0, z1, z2)) → c15(A__IF(mark(z0), z1, z2), MARK(z0))
MARK(add(z0, z1)) → c16(A__ADD(mark(z0), z1), MARK(z0))
MARK(first(z0, z1)) → c17(MARK(z0), MARK(z1))
S tuples:
A__ADD(0, z0) → c6(MARK(z0))
MARK(add(z0, z1)) → c16(A__ADD(mark(z0), z1), MARK(z0))
K tuples:
A__AND(true, z0) → c(MARK(z0))
MARK(first(z0, z1)) → c17(MARK(z0), MARK(z1))
A__IF(true, z0, z1) → c3(MARK(z0))
A__IF(false, z0, z1) → c4(MARK(z1))
MARK(and(z0, z1)) → c14(A__AND(mark(z0), z1), MARK(z0))
MARK(if(z0, z1, z2)) → c15(A__IF(mark(z0), z1, z2), MARK(z0))
Defined Rule Symbols:
a__and, a__if, a__add, a__first, a__from, mark
Defined Pair Symbols:
A__AND, A__IF, A__ADD, MARK
Compound Symbols:
c, c3, c4, c6, c14, c15, c16, c17
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MARK(add(z0, z1)) → c16(A__ADD(mark(z0), z1), MARK(z0))
We considered the (Usable) Rules:
mark(and(z0, z1)) → a__and(mark(z0), z1)
mark(if(z0, z1, z2)) → a__if(mark(z0), z1, z2)
mark(add(z0, z1)) → a__add(mark(z0), z1)
mark(first(z0, z1)) → a__first(mark(z0), mark(z1))
mark(from(z0)) → a__from(z0)
mark(true) → true
mark(false) → false
mark(0) → 0
mark(s(z0)) → s(z0)
mark(nil) → nil
mark(cons(z0, z1)) → cons(z0, z1)
a__and(true, z0) → mark(z0)
a__and(false, z0) → false
a__and(z0, z1) → and(z0, z1)
a__if(true, z0, z1) → mark(z0)
a__if(false, z0, z1) → mark(z1)
a__if(z0, z1, z2) → if(z0, z1, z2)
a__add(0, z0) → mark(z0)
a__add(s(z0), z1) → s(add(z0, z1))
a__add(z0, z1) → add(z0, z1)
a__from(z0) → cons(z0, from(s(z0)))
a__from(z0) → from(z0)
a__first(0, z0) → nil
a__first(s(z0), cons(z1, z2)) → cons(z1, first(z0, z2))
a__first(z0, z1) → first(z0, z1)
And the Tuples:
A__AND(true, z0) → c(MARK(z0))
A__IF(true, z0, z1) → c3(MARK(z0))
A__IF(false, z0, z1) → c4(MARK(z1))
A__ADD(0, z0) → c6(MARK(z0))
MARK(and(z0, z1)) → c14(A__AND(mark(z0), z1), MARK(z0))
MARK(if(z0, z1, z2)) → c15(A__IF(mark(z0), z1, z2), MARK(z0))
MARK(add(z0, z1)) → c16(A__ADD(mark(z0), z1), MARK(z0))
MARK(first(z0, z1)) → c17(MARK(z0), MARK(z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(A__ADD(x1, x2)) = [4]x2
POL(A__AND(x1, x2)) = [3] + [4]x2
POL(A__IF(x1, x2, x3)) = [4] + [4]x2 + [4]x3
POL(MARK(x1)) = [4]x1
POL(a__add(x1, x2)) = [4] + [2]x1 + [3]x2
POL(a__and(x1, x2)) = [5] + [3]x1 + [3]x2
POL(a__first(x1, x2)) = [2] + [2]x1 + [2]x2
POL(a__from(x1)) = [3] + [3]x1
POL(a__if(x1, x2, x3)) = [4] + [3]x1 + [2]x2 + [4]x3
POL(add(x1, x2)) = [4] + x1 + x2
POL(and(x1, x2)) = [1] + x1 + x2
POL(c(x1)) = x1
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1, x2)) = x1 + x2
POL(c16(x1, x2)) = x1 + x2
POL(c17(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c6(x1)) = x1
POL(cons(x1, x2)) = [2]
POL(false) = [2]
POL(first(x1, x2)) = x1 + x2
POL(from(x1)) = [3]
POL(if(x1, x2, x3)) = [1] + x1 + x2 + x3
POL(mark(x1)) = 0
POL(nil) = [5]
POL(s(x1)) = [3]
POL(true) = [4]
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__and(true, z0) → mark(z0)
a__and(false, z0) → false
a__and(z0, z1) → and(z0, z1)
a__if(true, z0, z1) → mark(z0)
a__if(false, z0, z1) → mark(z1)
a__if(z0, z1, z2) → if(z0, z1, z2)
a__add(0, z0) → mark(z0)
a__add(s(z0), z1) → s(add(z0, z1))
a__add(z0, z1) → add(z0, z1)
a__first(0, z0) → nil
a__first(s(z0), cons(z1, z2)) → cons(z1, first(z0, z2))
a__first(z0, z1) → first(z0, z1)
a__from(z0) → cons(z0, from(s(z0)))
a__from(z0) → from(z0)
mark(and(z0, z1)) → a__and(mark(z0), z1)
mark(if(z0, z1, z2)) → a__if(mark(z0), z1, z2)
mark(add(z0, z1)) → a__add(mark(z0), z1)
mark(first(z0, z1)) → a__first(mark(z0), mark(z1))
mark(from(z0)) → a__from(z0)
mark(true) → true
mark(false) → false
mark(0) → 0
mark(s(z0)) → s(z0)
mark(nil) → nil
mark(cons(z0, z1)) → cons(z0, z1)
Tuples:
A__AND(true, z0) → c(MARK(z0))
A__IF(true, z0, z1) → c3(MARK(z0))
A__IF(false, z0, z1) → c4(MARK(z1))
A__ADD(0, z0) → c6(MARK(z0))
MARK(and(z0, z1)) → c14(A__AND(mark(z0), z1), MARK(z0))
MARK(if(z0, z1, z2)) → c15(A__IF(mark(z0), z1, z2), MARK(z0))
MARK(add(z0, z1)) → c16(A__ADD(mark(z0), z1), MARK(z0))
MARK(first(z0, z1)) → c17(MARK(z0), MARK(z1))
S tuples:
A__ADD(0, z0) → c6(MARK(z0))
K tuples:
A__AND(true, z0) → c(MARK(z0))
MARK(first(z0, z1)) → c17(MARK(z0), MARK(z1))
A__IF(true, z0, z1) → c3(MARK(z0))
A__IF(false, z0, z1) → c4(MARK(z1))
MARK(and(z0, z1)) → c14(A__AND(mark(z0), z1), MARK(z0))
MARK(if(z0, z1, z2)) → c15(A__IF(mark(z0), z1, z2), MARK(z0))
MARK(add(z0, z1)) → c16(A__ADD(mark(z0), z1), MARK(z0))
Defined Rule Symbols:
a__and, a__if, a__add, a__first, a__from, mark
Defined Pair Symbols:
A__AND, A__IF, A__ADD, MARK
Compound Symbols:
c, c3, c4, c6, c14, c15, c16, c17
(13) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
A__ADD(0, z0) → c6(MARK(z0))
MARK(and(z0, z1)) → c14(A__AND(mark(z0), z1), MARK(z0))
MARK(if(z0, z1, z2)) → c15(A__IF(mark(z0), z1, z2), MARK(z0))
MARK(add(z0, z1)) → c16(A__ADD(mark(z0), z1), MARK(z0))
MARK(first(z0, z1)) → c17(MARK(z0), MARK(z1))
Now S is empty
(14) BOUNDS(O(1), O(1))