We consider the following Problem: Strict Trs: { f(n__f(n__a())) -> f(n__g(f(n__a()))) , f(X) -> n__f(X) , a() -> n__a() , g(X) -> n__g(X) , activate(n__f(X)) -> f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(X) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { f(n__f(n__a())) -> f(n__g(f(n__a()))) , f(X) -> n__f(X) , a() -> n__a() , g(X) -> n__g(X) , activate(n__f(X)) -> f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(X) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { f(X) -> n__f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1}, Uargs(n__f) = {}, Uargs(n__g) = {1}, Uargs(g) = {}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [1 0] x1 + [1] [0 0] [1] n__f(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__g(x1) = [1 0] x1 + [0] [1 0] [0] a() = [0] [0] g(x1) = [1 0] x1 + [0] [0 0] [0] activate(x1) = [1 0] x1 + [1] [1 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { f(n__f(n__a())) -> f(n__g(f(n__a()))) , a() -> n__a() , g(X) -> n__g(X) , activate(n__f(X)) -> f(X) , activate(X) -> X} Weak Trs: { f(X) -> n__f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {a() -> n__a()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1}, Uargs(n__f) = {}, Uargs(n__g) = {1}, Uargs(g) = {}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [1 0] x1 + [1] [0 0] [1] n__f(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__g(x1) = [1 0] x1 + [0] [0 0] [0] a() = [1] [0] g(x1) = [1 0] x1 + [0] [0 0] [0] activate(x1) = [1 0] x1 + [1] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { f(n__f(n__a())) -> f(n__g(f(n__a()))) , g(X) -> n__g(X) , activate(n__f(X)) -> f(X) , activate(X) -> X} Weak Trs: { a() -> n__a() , f(X) -> n__f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {g(X) -> n__g(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1}, Uargs(n__f) = {}, Uargs(n__g) = {1}, Uargs(g) = {}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [1 0] x1 + [1] [0 0] [1] n__f(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__g(x1) = [1 0] x1 + [0] [0 0] [0] a() = [0] [0] g(x1) = [1 0] x1 + [1] [0 0] [0] activate(x1) = [1 0] x1 + [1] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { f(n__f(n__a())) -> f(n__g(f(n__a()))) , activate(n__f(X)) -> f(X) , activate(X) -> X} Weak Trs: { g(X) -> n__g(X) , a() -> n__a() , f(X) -> n__f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(n__f(X)) -> f(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1}, Uargs(n__f) = {}, Uargs(n__g) = {1}, Uargs(g) = {}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [1 0] x1 + [1] [0 0] [1] n__f(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__g(x1) = [1 0] x1 + [0] [0 0] [0] a() = [0] [0] g(x1) = [1 0] x1 + [0] [0 0] [0] activate(x1) = [1 0] x1 + [3] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { f(n__f(n__a())) -> f(n__g(f(n__a()))) , activate(X) -> X} Weak Trs: { activate(n__f(X)) -> f(X) , g(X) -> n__g(X) , a() -> n__a() , f(X) -> n__f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(X) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1}, Uargs(n__f) = {}, Uargs(n__g) = {1}, Uargs(g) = {}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [1 0] x1 + [1] [0 0] [1] n__f(x1) = [1 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__g(x1) = [1 0] x1 + [0] [0 0] [0] a() = [0] [0] g(x1) = [1 0] x1 + [0] [0 0] [0] activate(x1) = [1 0] x1 + [1] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {f(n__f(n__a())) -> f(n__g(f(n__a())))} Weak Trs: { activate(X) -> X , activate(n__f(X)) -> f(X) , g(X) -> n__g(X) , a() -> n__a() , f(X) -> n__f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {f(n__f(n__a())) -> f(n__g(f(n__a())))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {1}, Uargs(n__f) = {}, Uargs(n__g) = {1}, Uargs(g) = {}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [1 2] x1 + [0] [0 0] [3] n__f(x1) = [1 2] x1 + [0] [0 0] [3] n__a() = [0] [1] n__g(x1) = [1 0] x1 + [0] [0 0] [1] a() = [0] [1] g(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [1] [0 1] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Weak Trs: { f(n__f(n__a())) -> f(n__g(f(n__a()))) , activate(X) -> X , activate(n__f(X)) -> f(X) , g(X) -> n__g(X) , a() -> n__a() , f(X) -> n__f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { f(n__f(n__a())) -> f(n__g(f(n__a()))) , activate(X) -> X , activate(n__f(X)) -> f(X) , g(X) -> n__g(X) , a() -> n__a() , f(X) -> n__f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(X)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))