We consider the following Problem: Strict Trs: { f(n__f(n__a())) -> f(n__g(n__f(n__a()))) , f(X) -> n__f(X) , a() -> n__a() , g(X) -> n__g(X) , activate(n__f(X)) -> f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(activate(X)) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { f(n__f(n__a())) -> f(n__g(n__f(n__a()))) , f(X) -> n__f(X) , a() -> n__a() , g(X) -> n__g(X) , activate(n__f(X)) -> f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(activate(X)) , activate(X) -> X} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { f(X) -> n__f(X) , activate(n__a()) -> a()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {}, Uargs(n__f) = {}, Uargs(n__g) = {}, Uargs(g) = {1}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [0 0] x1 + [1] [0 0] [1] n__f(x1) = [0 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__g(x1) = [1 0] x1 + [0] [0 0] [0] a() = [0] [0] g(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [1] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { f(n__f(n__a())) -> f(n__g(n__f(n__a()))) , a() -> n__a() , g(X) -> n__g(X) , activate(n__f(X)) -> f(X) , activate(n__g(X)) -> g(activate(X)) , activate(X) -> X} Weak Trs: { f(X) -> n__f(X) , activate(n__a()) -> a()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {a() -> n__a()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {}, Uargs(n__f) = {}, Uargs(n__g) = {}, Uargs(g) = {1}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [0 0] x1 + [1] [0 0] [1] n__f(x1) = [0 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__g(x1) = [1 0] x1 + [0] [0 0] [0] a() = [1] [0] g(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [1] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { f(n__f(n__a())) -> f(n__g(n__f(n__a()))) , g(X) -> n__g(X) , activate(n__f(X)) -> f(X) , activate(n__g(X)) -> g(activate(X)) , activate(X) -> X} Weak Trs: { a() -> n__a() , f(X) -> n__f(X) , activate(n__a()) -> a()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {g(X) -> n__g(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {}, Uargs(n__f) = {}, Uargs(n__g) = {}, Uargs(g) = {1}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [0 0] x1 + [1] [0 0] [1] n__f(x1) = [0 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__g(x1) = [1 0] x1 + [0] [0 0] [0] a() = [0] [0] g(x1) = [1 0] x1 + [2] [0 0] [1] activate(x1) = [1 0] x1 + [1] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { f(n__f(n__a())) -> f(n__g(n__f(n__a()))) , activate(n__f(X)) -> f(X) , activate(n__g(X)) -> g(activate(X)) , activate(X) -> X} Weak Trs: { g(X) -> n__g(X) , a() -> n__a() , f(X) -> n__f(X) , activate(n__a()) -> a()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(n__f(X)) -> f(X)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {}, Uargs(n__f) = {}, Uargs(n__g) = {}, Uargs(g) = {1}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [0 0] x1 + [1] [0 0] [1] n__f(x1) = [0 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__g(x1) = [1 0] x1 + [0] [0 0] [0] a() = [0] [0] g(x1) = [1 2] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [3] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { f(n__f(n__a())) -> f(n__g(n__f(n__a()))) , activate(n__g(X)) -> g(activate(X)) , activate(X) -> X} Weak Trs: { activate(n__f(X)) -> f(X) , g(X) -> n__g(X) , a() -> n__a() , f(X) -> n__f(X) , activate(n__a()) -> a()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {f(n__f(n__a())) -> f(n__g(n__f(n__a())))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {}, Uargs(n__f) = {}, Uargs(n__g) = {}, Uargs(g) = {1}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [0 1] x1 + [0] [0 0] [2] n__f(x1) = [0 1] x1 + [0] [0 0] [2] n__a() = [0] [0] n__g(x1) = [1 0] x1 + [1] [0 0] [0] a() = [0] [0] g(x1) = [1 0] x1 + [1] [1 0] [1] activate(x1) = [1 0] x1 + [0] [0 0] [2] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { activate(n__g(X)) -> g(activate(X)) , activate(X) -> X} Weak Trs: { f(n__f(n__a())) -> f(n__g(n__f(n__a()))) , activate(n__f(X)) -> f(X) , g(X) -> n__g(X) , a() -> n__a() , f(X) -> n__f(X) , activate(n__a()) -> a()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {activate(X) -> X} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {}, Uargs(n__f) = {}, Uargs(n__g) = {}, Uargs(g) = {1}, Uargs(activate) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [0 0] x1 + [1] [0 0] [1] n__f(x1) = [0 0] x1 + [0] [0 0] [0] n__a() = [0] [0] n__g(x1) = [1 0] x1 + [0] [0 0] [0] a() = [0] [0] g(x1) = [1 0] x1 + [0] [0 0] [1] activate(x1) = [1 0] x1 + [1] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {activate(n__g(X)) -> g(activate(X))} Weak Trs: { activate(X) -> X , f(n__f(n__a())) -> f(n__g(n__f(n__a()))) , activate(n__f(X)) -> f(X) , g(X) -> n__g(X) , a() -> n__a() , f(X) -> n__f(X) , activate(n__a()) -> a()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: {activate(n__g(X)) -> g(activate(X))} Weak Trs: { activate(X) -> X , f(n__f(n__a())) -> f(n__g(n__f(n__a()))) , activate(n__f(X)) -> f(X) , g(X) -> n__g(X) , a() -> n__a() , f(X) -> n__f(X) , activate(n__a()) -> a()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { f_0(2) -> 1 , f_1(2) -> 3 , f_1(4) -> 1 , f_1(4) -> 3 , n__f_0(2) -> 1 , n__f_0(2) -> 2 , n__f_0(2) -> 3 , n__f_1(2) -> 3 , n__f_1(4) -> 1 , n__f_1(4) -> 3 , n__f_1(6) -> 5 , n__a_0() -> 1 , n__a_0() -> 2 , n__a_0() -> 3 , n__a_1() -> 3 , n__a_1() -> 6 , n__g_0(2) -> 1 , n__g_0(2) -> 2 , n__g_0(2) -> 3 , n__g_1(3) -> 1 , n__g_1(3) -> 3 , n__g_1(5) -> 4 , a_0() -> 1 , a_1() -> 3 , g_0(2) -> 1 , g_1(3) -> 1 , g_1(3) -> 3 , activate_0(2) -> 1 , activate_1(2) -> 3} Hurray, we answered YES(?,O(n^1))