(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(f(f(a))) → mark(f(g(f(a))))
active(g(X)) → g(active(X))
g(mark(X)) → mark(g(X))
proper(f(X)) → f(proper(X))
proper(a) → ok(a)
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(f(f(a))) → c(F(g(f(a))), G(f(a)), F(a))
ACTIVE(g(z0)) → c1(G(active(z0)), ACTIVE(z0))
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(f(f(a))) → c(F(g(f(a))), G(f(a)), F(a))
ACTIVE(g(z0)) → c1(G(active(z0)), ACTIVE(z0))
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, g, proper, f, top
Defined Pair Symbols:
ACTIVE, G, PROPER, F, TOP
Compound Symbols:
c, c1, c2, c3, c4, c6, c7, c8, c9
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
ACTIVE(f(f(a))) → c(F(g(f(a))), G(f(a)), F(a))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(g(z0)) → c1(G(active(z0)), ACTIVE(z0))
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(g(z0)) → c1(G(active(z0)), ACTIVE(z0))
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, g, proper, f, top
Defined Pair Symbols:
ACTIVE, G, PROPER, F, TOP
Compound Symbols:
c1, c2, c3, c4, c6, c7, c8, c9
(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
g(
z0)) →
c1(
G(
active(
z0)),
ACTIVE(
z0)) by
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(x0)) → c1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(x0)) → c1
S tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(x0)) → c1
K tuples:none
Defined Rule Symbols:
active, g, proper, f, top
Defined Pair Symbols:
G, PROPER, F, TOP, ACTIVE
Compound Symbols:
c2, c3, c4, c6, c7, c8, c9, c1, c1
(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
ACTIVE(g(x0)) → c1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
S tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(f(z0)) → c4(F(proper(z0)), PROPER(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
K tuples:none
Defined Rule Symbols:
active, g, proper, f, top
Defined Pair Symbols:
G, PROPER, F, TOP, ACTIVE
Compound Symbols:
c2, c3, c4, c6, c7, c8, c9, c1
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
f(
z0)) →
c4(
F(
proper(
z0)),
PROPER(
z0)) by
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(x0)) → c4
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(x0)) → c4
S tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(f(x0)) → c4
K tuples:none
Defined Rule Symbols:
active, g, proper, f, top
Defined Pair Symbols:
G, PROPER, F, TOP, ACTIVE
Compound Symbols:
c2, c3, c6, c7, c8, c9, c1, c4, c4
(11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
PROPER(f(x0)) → c4
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
S tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
PROPER(g(z0)) → c6(G(proper(z0)), PROPER(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
K tuples:none
Defined Rule Symbols:
active, g, proper, f, top
Defined Pair Symbols:
G, PROPER, F, TOP, ACTIVE
Compound Symbols:
c2, c3, c6, c7, c8, c9, c1, c4
(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
g(
z0)) →
c6(
G(
proper(
z0)),
PROPER(
z0)) by
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(x0)) → c6
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(x0)) → c6
S tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
PROPER(g(x0)) → c6
K tuples:none
Defined Rule Symbols:
active, g, proper, f, top
Defined Pair Symbols:
G, F, TOP, ACTIVE, PROPER
Compound Symbols:
c2, c3, c7, c8, c9, c1, c4, c6, c6
(15) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
PROPER(g(x0)) → c6
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
S tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
TOP(mark(z0)) → c8(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
K tuples:none
Defined Rule Symbols:
active, g, proper, f, top
Defined Pair Symbols:
G, F, TOP, ACTIVE, PROPER
Compound Symbols:
c2, c3, c7, c8, c9, c1, c4, c6
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
mark(
z0)) →
c8(
TOP(
proper(
z0)),
PROPER(
z0)) by
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(a)) → c8(TOP(ok(a)), PROPER(a))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(x0)) → c8
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(a)) → c8(TOP(ok(a)), PROPER(a))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(x0)) → c8
S tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(a)) → c8(TOP(ok(a)), PROPER(a))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(mark(x0)) → c8
K tuples:none
Defined Rule Symbols:
active, g, proper, f, top
Defined Pair Symbols:
G, F, TOP, ACTIVE, PROPER
Compound Symbols:
c2, c3, c7, c9, c1, c4, c6, c8, c8
(19) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
TOP(mark(x0)) → c8
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(a)) → c8(TOP(ok(a)), PROPER(a))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
S tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(a)) → c8(TOP(ok(a)), PROPER(a))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
K tuples:none
Defined Rule Symbols:
active, g, proper, f, top
Defined Pair Symbols:
G, F, TOP, ACTIVE, PROPER
Compound Symbols:
c2, c3, c7, c9, c1, c4, c6, c8
(21) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(a)) → c8(TOP(ok(a)), PROPER(a))
We considered the (Usable) Rules:
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
f(ok(z0)) → ok(f(z0))
active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
And the Tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(a)) → c8(TOP(ok(a)), PROPER(a))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [2]x1
POL(a) = [1]
POL(active(x1)) = 0
POL(c1(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(f(x1)) = 0
POL(g(x1)) = 0
POL(mark(x1)) = x1
POL(ok(x1)) = 0
POL(proper(x1)) = 0
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(a)) → c8(TOP(ok(a)), PROPER(a))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
S tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
TOP(ok(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
K tuples:
TOP(mark(a)) → c8(TOP(ok(a)), PROPER(a))
Defined Rule Symbols:
active, g, proper, f, top
Defined Pair Symbols:
G, F, TOP, ACTIVE, PROPER
Compound Symbols:
c2, c3, c7, c9, c1, c4, c6, c8
(23) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
ok(
z0)) →
c9(
TOP(
active(
z0)),
ACTIVE(
z0)) by
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(g(z0))) → c9(TOP(g(active(z0))), ACTIVE(g(z0)))
TOP(ok(x0)) → c9
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(a)) → c8(TOP(ok(a)), PROPER(a))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(g(z0))) → c9(TOP(g(active(z0))), ACTIVE(g(z0)))
TOP(ok(x0)) → c9
S tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(g(z0))) → c9(TOP(g(active(z0))), ACTIVE(g(z0)))
TOP(ok(x0)) → c9
K tuples:
TOP(mark(a)) → c8(TOP(ok(a)), PROPER(a))
Defined Rule Symbols:
active, g, proper, f, top
Defined Pair Symbols:
G, F, ACTIVE, PROPER, TOP
Compound Symbols:
c2, c3, c7, c1, c4, c6, c8, c9, c9
(25) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
TOP(ok(x0)) → c9
TOP(mark(a)) → c8(TOP(ok(a)), PROPER(a))
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(g(z0))) → c9(TOP(g(active(z0))), ACTIVE(g(z0)))
S tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(g(z0))) → c9(TOP(g(active(z0))), ACTIVE(g(z0)))
K tuples:none
Defined Rule Symbols:
active, g, proper, f, top
Defined Pair Symbols:
G, F, ACTIVE, PROPER, TOP
Compound Symbols:
c2, c3, c7, c1, c4, c6, c8, c9
(27) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
We considered the (Usable) Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
And the Tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(g(z0))) → c9(TOP(g(active(z0))), ACTIVE(g(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(F(x1)) = 0
POL(G(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [4]x1
POL(a) = [1]
POL(active(x1)) = 0
POL(c1(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(f(x1)) = [4]x1
POL(g(x1)) = 0
POL(mark(x1)) = x1
POL(ok(x1)) = x1
POL(proper(x1)) = x1
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(g(z0))) → c9(TOP(g(active(z0))), ACTIVE(g(z0)))
S tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))), ACTIVE(f(f(a))))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(ok(g(z0))) → c9(TOP(g(active(z0))), ACTIVE(g(z0)))
K tuples:
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
Defined Rule Symbols:
active, g, proper, f, top
Defined Pair Symbols:
G, F, ACTIVE, PROPER, TOP
Compound Symbols:
c2, c3, c7, c1, c4, c6, c8, c9
(29) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
g(
f(
f(
a)))) →
c1(
G(
mark(
f(
g(
f(
a))))),
ACTIVE(
f(
f(
a)))) by
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(f(a))) → mark(f(g(f(a))))
active(g(z0)) → g(active(z0))
g(mark(z0)) → mark(g(z0))
g(ok(z0)) → ok(g(z0))
proper(f(z0)) → f(proper(z0))
proper(a) → ok(a)
proper(g(z0)) → g(proper(z0))
f(ok(z0)) → ok(f(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
TOP(ok(g(z0))) → c9(TOP(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
S tuples:
G(mark(z0)) → c2(G(z0))
G(ok(z0)) → c3(G(z0))
F(ok(z0)) → c7(F(z0))
ACTIVE(g(g(z0))) → c1(G(g(active(z0))), ACTIVE(g(z0)))
PROPER(f(f(z0))) → c4(F(f(proper(z0))), PROPER(f(z0)))
PROPER(f(a)) → c4(F(ok(a)), PROPER(a))
PROPER(f(g(z0))) → c4(F(g(proper(z0))), PROPER(g(z0)))
PROPER(g(f(z0))) → c6(G(f(proper(z0))), PROPER(f(z0)))
PROPER(g(a)) → c6(G(ok(a)), PROPER(a))
PROPER(g(g(z0))) → c6(G(g(proper(z0))), PROPER(g(z0)))
TOP(mark(f(z0))) → c8(TOP(f(proper(z0))), PROPER(f(z0)))
TOP(mark(g(z0))) → c8(TOP(g(proper(z0))), PROPER(g(z0)))
TOP(ok(g(z0))) → c9(TOP(g(active(z0))), ACTIVE(g(z0)))
ACTIVE(g(f(f(a)))) → c1(G(mark(f(g(f(a))))))
K tuples:
TOP(ok(f(f(a)))) → c9(TOP(mark(f(g(f(a))))), ACTIVE(f(f(a))))
Defined Rule Symbols:
active, g, proper, f, top
Defined Pair Symbols:
G, F, ACTIVE, PROPER, TOP
Compound Symbols:
c2, c3, c7, c1, c4, c6, c8, c9, c1
(31) CpxTrsMatchBoundsProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 2.
The certificate found is represented by the following graph.
Start state: 1567
Accept states: [1568, 1569, 1570, 1571, 1572]
Transitions:
1567→1568[active_1|0]
1567→1569[g_1|0]
1567→1570[proper_1|0]
1567→1571[f_1|0]
1567→1572[top_1|0]
1567→1567[a|0, mark_1|0, ok_1|0]
1567→1573[a|1]
1567→1574[g_1|1]
1567→1575[proper_1|1]
1567→1576[g_1|1]
1567→1577[f_1|1]
1567→1578[active_1|1]
1573→1570[ok_1|1]
1573→1575[ok_1|1]
1573→1579[active_1|2]
1574→1569[mark_1|1]
1574→1574[mark_1|1]
1574→1576[mark_1|1]
1575→1572[top_1|1]
1576→1569[ok_1|1]
1576→1574[ok_1|1]
1576→1576[ok_1|1]
1577→1571[ok_1|1]
1577→1577[ok_1|1]
1578→1572[top_1|1]
1579→1572[top_1|2]
(32) BOUNDS(O(1), O(n^1))