(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(0, 1, X) → f(g(X, X), X, X)
g(X, Y) → X
g(X, Y) → Y

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(0, 1, z0) → f(g(z0, z0), z0, z0)
g(z0, z1) → z0
g(z0, z1) → z1
Tuples:

F(0, 1, z0) → c(F(g(z0, z0), z0, z0), G(z0, z0))
S tuples:

F(0, 1, z0) → c(F(g(z0, z0), z0, z0), G(z0, z0))
K tuples:none
Defined Rule Symbols:

f, g

Defined Pair Symbols:

F

Compound Symbols:

c

(3) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(0, 1, z0) → f(g(z0, z0), z0, z0)
g(z0, z1) → z0
g(z0, z1) → z1
Tuples:

F(0, 1, z0) → c(F(g(z0, z0), z0, z0))
S tuples:

F(0, 1, z0) → c(F(g(z0, z0), z0, z0))
K tuples:none
Defined Rule Symbols:

f, g

Defined Pair Symbols:

F

Compound Symbols:

c

(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace F(0, 1, z0) → c(F(g(z0, z0), z0, z0)) by

F(0, 1, z0) → c(F(z0, z0, z0))
F(0, 1, x0) → c

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(0, 1, z0) → f(g(z0, z0), z0, z0)
g(z0, z1) → z0
g(z0, z1) → z1
Tuples:

F(0, 1, z0) → c(F(z0, z0, z0))
F(0, 1, x0) → c
S tuples:

F(0, 1, z0) → c(F(z0, z0, z0))
F(0, 1, x0) → c
K tuples:none
Defined Rule Symbols:

f, g

Defined Pair Symbols:

F

Compound Symbols:

c, c

(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing nodes:

F(0, 1, z0) → c(F(z0, z0, z0))
F(0, 1, x0) → c

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(0, 1, z0) → f(g(z0, z0), z0, z0)
g(z0, z1) → z0
g(z0, z1) → z1
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

f, g

Defined Pair Symbols:none

Compound Symbols:none

(9) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(10) BOUNDS(O(1), O(1))